Reza Dastbasteh, Farzad Padashnick, Pedro M. Crespo, Markus Grassl, Javad Sharafi
{"title":"Equivalence of constacyclic codes with shift constants of different orders","authors":"Reza Dastbasteh, Farzad Padashnick, Pedro M. Crespo, Markus Grassl, Javad Sharafi","doi":"10.1007/s10623-024-01512-9","DOIUrl":null,"url":null,"abstract":"<p>Let <i>a</i> and <i>b</i> be two non-zero elements of a finite field <span>\\(\\mathbb {F}_q\\)</span>, where <span>\\(q>2\\)</span>. It has been shown that if <i>a</i> and <i>b</i> have the same multiplicative order in <span>\\(\\mathbb {F}_q\\)</span>, then the families of <i>a</i>-constacyclic and <i>b</i>-constacyclic codes over <span>\\(\\mathbb {F}_q\\)</span> are monomially equivalent. In this paper, we investigate the monomial equivalence of <i>a</i>-constacyclic and <i>b</i>-constacyclic codes when <i>a</i> and <i>b</i> have distinct multiplicative orders. We present novel conditions for establishing monomial equivalence in such constacyclic codes, surpassing previous methods of determining monomially equivalent constacyclic and cyclic codes. As an application, we use these results to search for new linear codes more systematically. In particular, we present more than 70 new record-breaking linear codes over various finite fields, as well as new binary quantum codes.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"11 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01512-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Let a and b be two non-zero elements of a finite field \(\mathbb {F}_q\), where \(q>2\). It has been shown that if a and b have the same multiplicative order in \(\mathbb {F}_q\), then the families of a-constacyclic and b-constacyclic codes over \(\mathbb {F}_q\) are monomially equivalent. In this paper, we investigate the monomial equivalence of a-constacyclic and b-constacyclic codes when a and b have distinct multiplicative orders. We present novel conditions for establishing monomial equivalence in such constacyclic codes, surpassing previous methods of determining monomially equivalent constacyclic and cyclic codes. As an application, we use these results to search for new linear codes more systematically. In particular, we present more than 70 new record-breaking linear codes over various finite fields, as well as new binary quantum codes.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.