Active Learning Guided Discovery of High Entropy Oxides Featuring High H2-production

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-10-17 DOI:10.1021/jacs.4c06272
Siyang Nie, Yan Xiang, Liang Wu, Guang Lin, Qingda Liu, Shengqi Chu, Xun Wang
{"title":"Active Learning Guided Discovery of High Entropy Oxides Featuring High H2-production","authors":"Siyang Nie, Yan Xiang, Liang Wu, Guang Lin, Qingda Liu, Shengqi Chu, Xun Wang","doi":"10.1021/jacs.4c06272","DOIUrl":null,"url":null,"abstract":"High entropy oxides (HEOs) represent a class of solid solutions comprising multiple elements, offering significant scientific potential. Due to the enormous combination types of elements, the design of HEOs with desirable properties within high-dimensional composition spaces has traditionally relied heavily on knowledge and intuition. In this study, we present an active learning (AL) strategy tailored to efficiently explore the vast compositional space of HEOs. Our approach operates as a closed-loop system, iteratively cycling through “Training, Prediction, and Experiment” stages. Across multiple AL iterations, we have successfully identified four novel HEOs from a vast array of potential compositions. These newly discovered materials exhibit exceptional stability and demonstrate outstanding performance in H<sub>2</sub> evolution rate (251 μmol g<sub>cat</sub><sup>–1</sup> min<sup>–1</sup>) during the water–gas shift reaction, surpassing benchmarks set by established catalysts such as Pt/γ–Al<sub>2</sub>O<sub>3</sub> (135 μmol g<sub>cat</sub><sup>–1</sup> min<sup>–1</sup>) and Cu/ZnO/Al<sub>2</sub>O<sub>3</sub> (81 μmol g<sub>cat</sub><sup>–1</sup> min<sup>–1</sup>). X-ray photoelectron spectroscopy and density functional theory calculations revealed a loss of elemental identity in the selected HEOs. This catalyst discovery process underscores the efficacy of Machine Learning in accelerating the identification of HEOs with unique characteristics by effectively leveraging insights from limited experimental data.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c06272","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High entropy oxides (HEOs) represent a class of solid solutions comprising multiple elements, offering significant scientific potential. Due to the enormous combination types of elements, the design of HEOs with desirable properties within high-dimensional composition spaces has traditionally relied heavily on knowledge and intuition. In this study, we present an active learning (AL) strategy tailored to efficiently explore the vast compositional space of HEOs. Our approach operates as a closed-loop system, iteratively cycling through “Training, Prediction, and Experiment” stages. Across multiple AL iterations, we have successfully identified four novel HEOs from a vast array of potential compositions. These newly discovered materials exhibit exceptional stability and demonstrate outstanding performance in H2 evolution rate (251 μmol gcat–1 min–1) during the water–gas shift reaction, surpassing benchmarks set by established catalysts such as Pt/γ–Al2O3 (135 μmol gcat–1 min–1) and Cu/ZnO/Al2O3 (81 μmol gcat–1 min–1). X-ray photoelectron spectroscopy and density functional theory calculations revealed a loss of elemental identity in the selected HEOs. This catalyst discovery process underscores the efficacy of Machine Learning in accelerating the identification of HEOs with unique characteristics by effectively leveraging insights from limited experimental data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主动学习引导发现高熵氧化物,具有高产氢能力
高熵氧化物(HEOs)是一类由多种元素组成的固体溶液,具有巨大的科学潜力。由于元素组合种类繁多,在高维组成空间内设计具有理想特性的高熵氧化物传统上主要依靠知识和直觉。在本研究中,我们提出了一种主动学习(AL)策略,专门用于有效探索 HEO 的巨大组合空间。我们的方法作为一个闭环系统运行,在 "训练、预测和实验 "三个阶段反复循环。通过多次 AL 迭代,我们成功地从大量潜在成分中识别出了四种新型 HEO。这些新发现的材料表现出卓越的稳定性,并在水气变换反应中表现出出色的 H2 演化率(251 μmol gcat-1 min-1),超过了 Pt/γ-Al2O3 (135 μmol gcat-1 min-1)和 Cu/ZnO/Al2O3 (81 μmol gcat-1 min-1)等成熟催化剂设定的基准。X 射线光电子能谱和密度泛函理论计算显示,所选的 HEO 中的元素特性有所丧失。这一催化剂发现过程凸显了机器学习在加速识别具有独特特征的 HEO 方面的功效,它有效地利用了从有限实验数据中获得的洞察力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Amorphous AlOCl Compounds Enabling Nanocrystalline LiCl with Abnormally High Ionic Conductivity Entropy-Derived Synthesis of the CuPd Sub-1nm Alloy for CO2-to-acetate Electroreduction Cross-Coupling of NHC/CAAC-Based Carbodicarbene: Synthesis of Electron-Deficient Diradicaloids Boosting Energy-Storage in High-Entropy Pb-Free Relaxors Engineered by Local Lattice Distortion Exceptional Field Effect and Negative Differential Conductance in Spiro-Conjugated Single-Molecule Junctions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1