TCellSI: A novel method for T cell state assessment and its applications in immune environment prediction

IF 23.7 Q1 MICROBIOLOGY iMeta Pub Date : 2024-08-26 DOI:10.1002/imt2.231
Jing-Min Yang, Nan Zhang, Tao Luo, Mei Yang, Wen-Kang Shen, Zhen-Lin Tan, Yun Xia, Libin Zhang, Xiaobo Zhou, Qian Lei, An-Yuan Guo
{"title":"TCellSI: A novel method for T cell state assessment and its applications in immune environment prediction","authors":"Jing-Min Yang,&nbsp;Nan Zhang,&nbsp;Tao Luo,&nbsp;Mei Yang,&nbsp;Wen-Kang Shen,&nbsp;Zhen-Lin Tan,&nbsp;Yun Xia,&nbsp;Libin Zhang,&nbsp;Xiaobo Zhou,&nbsp;Qian Lei,&nbsp;An-Yuan Guo","doi":"10.1002/imt2.231","DOIUrl":null,"url":null,"abstract":"<p>T cell is an indispensable component of the immune system and its multifaceted functions are shaped by the distinct T cell types and their various states. Although multiple computational models exist for predicting the abundance of diverse T cell types, tools for assessing their states to characterize their degree of resting, activation, and suppression are lacking. To address this gap, a robust and nuanced scoring tool called T cell state identifier (TCellSI) leveraging Mann–Whitney <i>U</i> statistics is established. The TCellSI methodology enables the evaluation of eight distinct T cell states—Quiescence, Regulating, Proliferation, Helper, Cytotoxicity, Progenitor exhaustion, Terminal exhaustion, and Senescence—from transcriptome data, providing T cell state scores (TCSS) for samples through specific marker gene sets and a compiled reference spectrum. Validated against sizeable pseudo-bulk and actual bulk RNA-seq data across a range of T cell types, TCellSI not only accurately characterizes T cell states but also surpasses existing well-discovered signatures in reflecting the nature of T cells. Significantly, the tool demonstrates predictive value in the immune environment, correlating T cell states with patient prognosis and responses to immunotherapy. For better utilization, the TCellSI is readily accessible through user-friendly R package and web server (https://guolab.wchscu.cn/TCellSI/). By offering insights into personalized cancer therapies, TCellSI has the potential to improve treatment outcomes and efficacy.</p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 5","pages":""},"PeriodicalIF":23.7000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.231","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iMeta","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/imt2.231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

T cell is an indispensable component of the immune system and its multifaceted functions are shaped by the distinct T cell types and their various states. Although multiple computational models exist for predicting the abundance of diverse T cell types, tools for assessing their states to characterize their degree of resting, activation, and suppression are lacking. To address this gap, a robust and nuanced scoring tool called T cell state identifier (TCellSI) leveraging Mann–Whitney U statistics is established. The TCellSI methodology enables the evaluation of eight distinct T cell states—Quiescence, Regulating, Proliferation, Helper, Cytotoxicity, Progenitor exhaustion, Terminal exhaustion, and Senescence—from transcriptome data, providing T cell state scores (TCSS) for samples through specific marker gene sets and a compiled reference spectrum. Validated against sizeable pseudo-bulk and actual bulk RNA-seq data across a range of T cell types, TCellSI not only accurately characterizes T cell states but also surpasses existing well-discovered signatures in reflecting the nature of T cells. Significantly, the tool demonstrates predictive value in the immune environment, correlating T cell states with patient prognosis and responses to immunotherapy. For better utilization, the TCellSI is readily accessible through user-friendly R package and web server (https://guolab.wchscu.cn/TCellSI/). By offering insights into personalized cancer therapies, TCellSI has the potential to improve treatment outcomes and efficacy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TCellSI:T 细胞状态评估的新方法及其在免疫环境预测中的应用
T 细胞是免疫系统不可或缺的组成部分,其多方面的功能由不同的 T 细胞类型及其各种状态决定。虽然有多种计算模型可以预测不同类型 T 细胞的丰度,但却缺乏评估其状态的工具来描述其静息、活化和抑制的程度。为了填补这一空白,我们利用曼-惠特尼 U 统计法建立了一种名为 T 细胞状态识别器(TCellSI)的强大而细致的评分工具。TCellSI方法能从转录组数据中评估八种不同的T细胞状态--静止、调节、增殖、辅助、细胞毒性、祖细胞衰竭、终末衰竭和衰老,通过特定的标记基因集和汇编的参考谱为样本提供T细胞状态评分(TCSS)。TCellSI通过对一系列T细胞类型的大量伪RNA-seq数据和实际RNA-seq数据进行验证,不仅能准确描述T细胞状态,而且在反映T细胞性质方面超越了现有已发现的特征。重要的是,该工具在免疫环境中显示出预测价值,将 T 细胞状态与患者预后和对免疫疗法的反应联系起来。为了更好地利用,TCellSI 可通过用户友好的 R 软件包和网络服务器 (https://guolab.wchscu.cn/TCellSI/) 轻松访问。通过深入了解个性化癌症疗法,TCellSI 有可能改善治疗结果和疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
0
期刊最新文献
Gut Bifidobacterium pseudocatenulatum protects against fat deposition by enhancing secondary bile acid biosynthesis. Comprehensive lung microbial gene and genome catalogs assist the mechanism survey of Mesomycoplasma hyopneumoniae strains causing pig lung lesions. Pangenome and genome variation analyses of pigs unveil genomic facets for their adaptation and agronomic characteristics. Transcriptome-wide association identifies KLC1 as a regulator of mitophagy in non-syndromic cleft lip with or without palate. Unraveling the diversity dynamics and network stability of alkaline phosphomonoesterase-producing bacteria in modulating maize yield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1