Luiz Paulo Melchior de Oliveira Leão, Albert Katchborian Neto, Karen de Jesus Nicácio, Stefânia Neiva Lavorato, Fernanda Brito Leite, Karina Camargo Teixeira, Michael Murgu, Ana Cláudia Chagas de Paula, Marisi Gomes Soares, Daniela Aparecida Chagas-Paula, Danielle Ferreira Dias
{"title":"Novel Synthesized Benzophenone Thiazole Hybrids Exhibited Ex Vivo and In Silico Anti-Inflammatory Activity","authors":"Luiz Paulo Melchior de Oliveira Leão, Albert Katchborian Neto, Karen de Jesus Nicácio, Stefânia Neiva Lavorato, Fernanda Brito Leite, Karina Camargo Teixeira, Michael Murgu, Ana Cláudia Chagas de Paula, Marisi Gomes Soares, Daniela Aparecida Chagas-Paula, Danielle Ferreira Dias","doi":"10.1111/cbdd.14634","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Novel benzophenone–thiazole hybrids with different substituents were synthesized and evaluated for anti-inflammatory activity using an ex vivo human whole-blood assay. All hybrids (<b>3c</b> and <b>5a–h</b>) showed significant anti-inflammatory activity via prostaglandin E2 (PGE2) release inhibition. Moreover, <b>5c</b> (82.8% of PGE2 inhibition), <b>5e</b> (83.1% of PGE2 inhibition), and <b>5h</b> (82.1% of PGE2 inhibition) were comparable to the reference drugs. Molecular docking revealed potential preferable binding to the active sites of cyclooxygenase 2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) enzymes. This study provides the first evidence that benzophenone–thiazole hybrids may also dock in mPGES-1, a new attractive anti-inflammatory drug target, besides providing promising ex vivo anti-inflammatory activity. Thus, the novel hybrids are promising anti-inflammatory lead compounds and highlight the significance of optimal substituent selection in the design of potent PGE2 inhibitors.</p>\n </div>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.14634","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Novel benzophenone–thiazole hybrids with different substituents were synthesized and evaluated for anti-inflammatory activity using an ex vivo human whole-blood assay. All hybrids (3c and 5a–h) showed significant anti-inflammatory activity via prostaglandin E2 (PGE2) release inhibition. Moreover, 5c (82.8% of PGE2 inhibition), 5e (83.1% of PGE2 inhibition), and 5h (82.1% of PGE2 inhibition) were comparable to the reference drugs. Molecular docking revealed potential preferable binding to the active sites of cyclooxygenase 2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) enzymes. This study provides the first evidence that benzophenone–thiazole hybrids may also dock in mPGES-1, a new attractive anti-inflammatory drug target, besides providing promising ex vivo anti-inflammatory activity. Thus, the novel hybrids are promising anti-inflammatory lead compounds and highlight the significance of optimal substituent selection in the design of potent PGE2 inhibitors.
期刊介绍:
Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.