DiffESM: Conditional Emulation of Temperature and Precipitation in Earth System Models With 3D Diffusion Models

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Advances in Modeling Earth Systems Pub Date : 2024-10-17 DOI:10.1029/2023MS004194
Seth Bassetti, Brian Hutchinson, Claudia Tebaldi, Ben Kravitz
{"title":"DiffESM: Conditional Emulation of Temperature and Precipitation in Earth System Models With 3D Diffusion Models","authors":"Seth Bassetti,&nbsp;Brian Hutchinson,&nbsp;Claudia Tebaldi,&nbsp;Ben Kravitz","doi":"10.1029/2023MS004194","DOIUrl":null,"url":null,"abstract":"<p>Earth system models (ESMs) are essential for understanding the interaction between human activities and the Earth's climate. However, the computational demands of ESMs often limit the number of simulations that can be run, hindering the robust analysis of risks associated with extreme weather events. While low-cost climate emulators have emerged as an alternative to emulate ESMs and enable rapid analysis of future climate, many of these emulators only provide output on at most a monthly frequency. This temporal resolution is insufficient for analyzing events that require daily characterization, such as heat waves or heavy precipitation. We propose using diffusion models, a class of generative deep learning models, to effectively downscale ESM output from a monthly to a daily frequency. Trained on a handful of ESM realizations, reflecting a wide range of radiative forcings, our DiffESM model takes monthly mean precipitation or temperature as input, and is capable of producing daily values with statistical characteristics close to ESM output. Combined with a low-cost emulator providing monthly means, this approach requires only a small fraction of the computational resources needed to run a large ensemble. We evaluate model behavior using a number of extreme metrics, showing that DiffESM closely matches the spatio-temporal behavior of the ESM output it emulates in terms of the frequency and spatial characteristics of phenomena such as heat waves, dry spells, or rainfall intensity.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004194","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004194","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Earth system models (ESMs) are essential for understanding the interaction between human activities and the Earth's climate. However, the computational demands of ESMs often limit the number of simulations that can be run, hindering the robust analysis of risks associated with extreme weather events. While low-cost climate emulators have emerged as an alternative to emulate ESMs and enable rapid analysis of future climate, many of these emulators only provide output on at most a monthly frequency. This temporal resolution is insufficient for analyzing events that require daily characterization, such as heat waves or heavy precipitation. We propose using diffusion models, a class of generative deep learning models, to effectively downscale ESM output from a monthly to a daily frequency. Trained on a handful of ESM realizations, reflecting a wide range of radiative forcings, our DiffESM model takes monthly mean precipitation or temperature as input, and is capable of producing daily values with statistical characteristics close to ESM output. Combined with a low-cost emulator providing monthly means, this approach requires only a small fraction of the computational resources needed to run a large ensemble. We evaluate model behavior using a number of extreme metrics, showing that DiffESM closely matches the spatio-temporal behavior of the ESM output it emulates in terms of the frequency and spatial characteristics of phenomena such as heat waves, dry spells, or rainfall intensity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DiffESM:利用三维扩散模型对地球系统模型中的温度和降水进行条件模拟
地球系统模型(ESM)对于了解人类活动与地球气候之间的相互作用至关重要。然而,ESM 的计算需求往往限制了可运行的模拟次数,从而阻碍了对极端天气事件相关风险的稳健分析。虽然出现了低成本的气候模拟器,作为模拟 ESM 和快速分析未来气候的替代方法,但许多模拟器最多只能提供月频率的输出。这种时间分辨率不足以分析需要每日描述的事件,如热浪或强降水。我们建议使用扩散模型(一类生成式深度学习模型)来有效地将 ESM 输出从月频率缩减到日频率。我们的 DiffESM 模型以月平均降水量或温度作为输入,在少量反映各种辐射作用力的 ESM 实现上进行训练,能够生成具有接近 ESM 输出的统计特征的日值。结合提供月平均值的低成本模拟器,这种方法只需要运行大型集合所需的一小部分计算资源。我们使用一系列极端指标对模型行为进行了评估,结果表明 DiffESM 在热浪、干旱或降雨强度等现象的频率和空间特征方面,与其模拟的 ESM 输出的时空行为非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
期刊最新文献
DiffESM: Conditional Emulation of Temperature and Precipitation in Earth System Models With 3D Diffusion Models Enhancing Global Simulation of Smoke Injection Height for Intense Pyro-Convection Through Coupling an Improved One-Dimensional Plume Rise Model in CAM-chem Benefits and Pitfalls of GRACE and Streamflow Assimilation for Improving the Streamflow Simulations of the WaterGAP Global Hydrology Model Toward the Direct Simulation of the Quasi-Biennial Oscillation in a Global Storm-Resolving Model Global Influence of Organic Aerosol Volatility on Aerosol Microphysical Processes: Composition and Number
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1