Early detection of dementia through retinal imaging and trustworthy AI

IF 15.1 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2024-10-20 DOI:10.1038/s41746-024-01292-5
Jinkui Hao, William R. Kwapong, Ting Shen, Huazhu Fu, Yanwu Xu, Qinkang Lu, Shouyue Liu, Jiong Zhang, Yonghuai Liu, Yifan Zhao, Yalin Zheng, Alejandro F. Frangi, Shuting Zhang, Hong Qi, Yitian Zhao
{"title":"Early detection of dementia through retinal imaging and trustworthy AI","authors":"Jinkui Hao, William R. Kwapong, Ting Shen, Huazhu Fu, Yanwu Xu, Qinkang Lu, Shouyue Liu, Jiong Zhang, Yonghuai Liu, Yifan Zhao, Yalin Zheng, Alejandro F. Frangi, Shuting Zhang, Hong Qi, Yitian Zhao","doi":"10.1038/s41746-024-01292-5","DOIUrl":null,"url":null,"abstract":"Alzheimer’s disease (AD) is a global healthcare challenge lacking a simple and affordable detection method. We propose a novel deep learning framework, Eye-AD, to detect Early-onset Alzheimer’s Disease (EOAD) and Mild Cognitive Impairment (MCI) using OCTA images of retinal microvasculature and choriocapillaris. Eye-AD employs a multilevel graph representation to analyze intra- and inter-instance relationships in retinal layers. Using 5751 OCTA images from 1671 participants in a multi-center study, our model demonstrated superior performance in EOAD (internal data: AUC = 0.9355, external data: AUC = 0.9007) and MCI detection (internal data: AUC = 0.8630, external data: AUC = 0.8037). Furthermore, we explored the associations between retinal structural biomarkers in OCTA images and EOAD/MCI, and the results align well with the conclusions drawn from our deep learning interpretability analysis. Our findings provide further evidence that retinal OCTA imaging, coupled with artificial intelligence, will serve as a rapid, noninvasive, and affordable dementia detection.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-15"},"PeriodicalIF":15.1000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01292-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01292-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer’s disease (AD) is a global healthcare challenge lacking a simple and affordable detection method. We propose a novel deep learning framework, Eye-AD, to detect Early-onset Alzheimer’s Disease (EOAD) and Mild Cognitive Impairment (MCI) using OCTA images of retinal microvasculature and choriocapillaris. Eye-AD employs a multilevel graph representation to analyze intra- and inter-instance relationships in retinal layers. Using 5751 OCTA images from 1671 participants in a multi-center study, our model demonstrated superior performance in EOAD (internal data: AUC = 0.9355, external data: AUC = 0.9007) and MCI detection (internal data: AUC = 0.8630, external data: AUC = 0.8037). Furthermore, we explored the associations between retinal structural biomarkers in OCTA images and EOAD/MCI, and the results align well with the conclusions drawn from our deep learning interpretability analysis. Our findings provide further evidence that retinal OCTA imaging, coupled with artificial intelligence, will serve as a rapid, noninvasive, and affordable dementia detection.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过视网膜成像和可信赖的人工智能及早发现痴呆症
阿尔茨海默病(AD)是一项全球性的医疗挑战,目前缺乏一种简单、经济实惠的检测方法。我们提出了一种新型深度学习框架 Eye-AD,利用视网膜微血管和绒毛膜的 OCTA 图像检测早发性阿尔茨海默病(EOAD)和轻度认知障碍(MCI)。Eye-AD 采用多层次图表示法来分析视网膜层的内部和实例间关系。利用一项多中心研究中 1671 名参与者的 5751 张 OCTA 图像,我们的模型在 EOAD(内部数据:AUC = 0.9355,外部数据:AUC = 0.9007)和 MCI 检测(内部数据:AUC = 0.8630,外部数据:AUC = 0.8037)中表现出卓越的性能。此外,我们还探讨了 OCTA 图像中视网膜结构生物标记物与 EOAD/MCI 之间的关联,结果与深度学习可解释性分析得出的结论非常吻合。我们的研究结果进一步证明,视网膜 OCTA 成像与人工智能相结合,将成为一种快速、无创、经济的痴呆症检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
Foundation model embeddings for multimodal oncology data integration. Secure distributed multiple imputation enables missing data inference for private data proprietors. The accuracy of Apple Watch measurements: a living systematic review and meta-analysis. Towards human-centric intelligent treatment planning for radiation therapy Evaluation of two easy-to-implement digital breathing interventions in the context of daily stress levels in a series of N-of-1 trials: results from the Anti-Stress Intervention Among Physicians (ASIP) study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1