Ryan D. Chow, Katherine L. Nathanson, Ravi B. Parikh
{"title":"Phenotypic evaluation of deep learning models for classifying germline variant pathogenicity","authors":"Ryan D. Chow, Katherine L. Nathanson, Ravi B. Parikh","doi":"10.1038/s41698-024-00710-x","DOIUrl":null,"url":null,"abstract":"Deep learning models for predicting variant pathogenicity have not been thoroughly evaluated on real-world clinical phenotypes. Here, we apply state-of-the-art pathogenicity prediction models to hereditary breast cancer gene variants in UK Biobank participants. Model predictions for missense variants in BRCA1, BRCA2 and PALB2, but not ATM and CHEK2, were associated with breast cancer risk. However, deep learning models had limited clinical utility when specifically applied to variants of uncertain significance.","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":" ","pages":"1-7"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41698-024-00710-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41698-024-00710-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning models for predicting variant pathogenicity have not been thoroughly evaluated on real-world clinical phenotypes. Here, we apply state-of-the-art pathogenicity prediction models to hereditary breast cancer gene variants in UK Biobank participants. Model predictions for missense variants in BRCA1, BRCA2 and PALB2, but not ATM and CHEK2, were associated with breast cancer risk. However, deep learning models had limited clinical utility when specifically applied to variants of uncertain significance.
期刊介绍:
Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.