Large Magnetic Anisotropy in van der Waals Ferromagnet Fe3GaTe2 above Room Temperature

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2024-10-21 DOI:10.1021/acs.jpclett.4c02426
Yilian Xi, Hanqing Shi, Jingwei Zhang, Heping Li, Ningyan Cheng, Hang Xu, Jiaqi Liu, Keren Li, Huaiming Guo, Haifeng Feng, Jianfeng Wang, Weichang Hao, Yi Du
{"title":"Large Magnetic Anisotropy in van der Waals Ferromagnet Fe3GaTe2 above Room Temperature","authors":"Yilian Xi, Hanqing Shi, Jingwei Zhang, Heping Li, Ningyan Cheng, Hang Xu, Jiaqi Liu, Keren Li, Huaiming Guo, Haifeng Feng, Jianfeng Wang, Weichang Hao, Yi Du","doi":"10.1021/acs.jpclett.4c02426","DOIUrl":null,"url":null,"abstract":"Discoveries of above-room-temperature intrinsic ferromagnetism in two-dimensional (2D) van der Waals (vdW) materials offer a platform for studying fundamental 2D magnetism and spintronic devices, especially the recently discovered above-room-temperature 2D vdW Fe<sub>3</sub>GaTe<sub>2</sub> (FGaT). However, the magnetic mechanism in FGaT remains elusive. Here, a detailed investigation using magnetic force microscopy on the thickness-dependent magnetic behavior of FGaT single crystals is reported. The Heisenberg exchange interaction constant (<i>J</i>) at room temperature is determined to be 1.32836 × 10<sup>–12</sup> J/m. Our study combining angle-resolved photoemission spectroscopy and density functional theory suggests that the high Curie temperature in FGaT is attributed to the shift of the localized Fe <i>d</i> band toward the Fermi level as well as the enhanced magnetic exchange effect due to the strong itinerant ability of Fe. This work sheds light on the understanding of magnetism in FGaT and provides a promising platform to investigate the mechanisms of 2D magnetic materials.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02426","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Discoveries of above-room-temperature intrinsic ferromagnetism in two-dimensional (2D) van der Waals (vdW) materials offer a platform for studying fundamental 2D magnetism and spintronic devices, especially the recently discovered above-room-temperature 2D vdW Fe3GaTe2 (FGaT). However, the magnetic mechanism in FGaT remains elusive. Here, a detailed investigation using magnetic force microscopy on the thickness-dependent magnetic behavior of FGaT single crystals is reported. The Heisenberg exchange interaction constant (J) at room temperature is determined to be 1.32836 × 10–12 J/m. Our study combining angle-resolved photoemission spectroscopy and density functional theory suggests that the high Curie temperature in FGaT is attributed to the shift of the localized Fe d band toward the Fermi level as well as the enhanced magnetic exchange effect due to the strong itinerant ability of Fe. This work sheds light on the understanding of magnetism in FGaT and provides a promising platform to investigate the mechanisms of 2D magnetic materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
室温以上范德华铁磁体 Fe3GaTe2 中的大磁各向异性
在二维范德华(vdW)材料中发现的高于室温的本征铁磁性为研究基本的二维磁性和自旋电子器件提供了一个平台,特别是最近发现的高于室温的二维范德华 Fe3GaTe2(FGaT)。然而,FGaT 中的磁机制仍然难以捉摸。本文报告了利用磁力显微镜对 FGaT 单晶随厚度变化的磁性行为进行的详细研究。室温下的海森堡交换相互作用常数 (J) 被确定为 1.32836 × 10-12 J/m。我们结合角度分辨光发射光谱和密度泛函理论进行的研究表明,FGaT 的高居里温度归因于局部铁 d 带向费米级的移动,以及铁的强巡回能力导致的磁交换效应的增强。这项研究揭示了对 FGaT 磁性的理解,为研究二维磁性材料的机理提供了一个前景广阔的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Nucleoprotein Phase-Separation Affinities Revealed via Atomistic Simulations of Short Peptide and RNA Fragments Large Magnetic Anisotropy in van der Waals Ferromagnet Fe3GaTe2 above Room Temperature Bidirectional Allostery Mechanism in Catch-Bond Formation of CD44 Mediated Cell Adhesion Conductance Channels in a Single-Entity Enzyme Electron Transfer Capability in Atomic Hydrogen Reactions for Imidazole Groups Bound to the Insulating Alkanethiolate Layer on Au(111).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1