Anwar Shafe, Pouria Nourian, Xiyuan Liu, Guoqiang Li, Collin D. Wick, Andrew J. Peters
{"title":"Identification and Design of Better Diamine-Hardened Epoxy-Based Thermoset Shape Memory Polymers: Simulation and Machine Learning","authors":"Anwar Shafe, Pouria Nourian, Xiyuan Liu, Guoqiang Li, Collin D. Wick, Andrew J. Peters","doi":"10.1021/acs.macromol.4c01598","DOIUrl":null,"url":null,"abstract":"An approach for designing thermoset shape memory polymers (TSMPs) with improved shape memory properties through the integration of molecular dynamics (MD) simulation, machine learning (ML), and chemical intuition is presented. We identified key molecular features correlated with desired shape memory properties, and used MD simulations to create an initial data set of TSMPs consisting of commercially available and manually designed monomers. Our prediction set was prepared by employing four different approaches for modifying existing monomers based on chemical intuition and insights gleaned from the literature. We trained our ML model on the initial data set, used it to identify the most promising candidates, evaluated their properties, and added them to our initial data set. To further speed up the process, we identified the most promising candidate after a few cycles and modified its structure to obtain a variant with better properties. Our approach, which capitalizes on the synergy between computational methodologies and human expertise to enable efficient exploration of vast chemical space, resulted in the design of a monomer exhibiting more than 60% increase in the desired recovery stress compared to the highest experimentally validated one.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"24 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c01598","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
An approach for designing thermoset shape memory polymers (TSMPs) with improved shape memory properties through the integration of molecular dynamics (MD) simulation, machine learning (ML), and chemical intuition is presented. We identified key molecular features correlated with desired shape memory properties, and used MD simulations to create an initial data set of TSMPs consisting of commercially available and manually designed monomers. Our prediction set was prepared by employing four different approaches for modifying existing monomers based on chemical intuition and insights gleaned from the literature. We trained our ML model on the initial data set, used it to identify the most promising candidates, evaluated their properties, and added them to our initial data set. To further speed up the process, we identified the most promising candidate after a few cycles and modified its structure to obtain a variant with better properties. Our approach, which capitalizes on the synergy between computational methodologies and human expertise to enable efficient exploration of vast chemical space, resulted in the design of a monomer exhibiting more than 60% increase in the desired recovery stress compared to the highest experimentally validated one.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.