Anna Dopler, Ferhat Alkan, Yuval Malka, Rob van der Kammen, Kelly Hoefakker, Daniel Taranto, Naz Kocabay, Iris Mimpen, Christel Ramirez, Elke Malzer, Olga I. Isaeva, Mandy Kerkhoff, Anastasia Gangaev, Joana Silva, Sofia Ramalho, Liesbeth Hoekman, Maarten Altelaar, Roderick Beijersbergen, Leila Akkari, Jonathan Wilson Yewdell, William James Faller
{"title":"P-stalk ribosomes act as master regulators of cytokine-mediated processes","authors":"Anna Dopler, Ferhat Alkan, Yuval Malka, Rob van der Kammen, Kelly Hoefakker, Daniel Taranto, Naz Kocabay, Iris Mimpen, Christel Ramirez, Elke Malzer, Olga I. Isaeva, Mandy Kerkhoff, Anastasia Gangaev, Joana Silva, Sofia Ramalho, Liesbeth Hoekman, Maarten Altelaar, Roderick Beijersbergen, Leila Akkari, Jonathan Wilson Yewdell, William James Faller","doi":"10.1016/j.cell.2024.09.039","DOIUrl":null,"url":null,"abstract":"Inflammatory cytokines are pivotal to immune responses. Upon cytokine exposure, cells enter an “alert state” that enhances their visibility to the immune system. Here, we identified an alert-state subpopulation of ribosomes defined by the presence of the P-stalk. We show that P-stalk ribosomes (PSRs) are formed in response to cytokines linked to tumor immunity, and this is at least partially mediated by P-stalk phosphorylation. PSRs are involved in the preferential translation of mRNAs vital for the cytokine response via the more efficient translation of transmembrane domains of receptor molecules involved in cytokine-mediated processes. Importantly, loss of the PSR inhibits CD8+ T cell recognition and killing, and inhibitory cytokines like transforming growth factor β (TGF-β) hinder PSR formation, suggesting that the PSR is a central regulatory hub upon which multiple signals converge. Thus, the PSR is an essential mediator of the cellular rewiring that occurs following cytokine exposure via the translational regulation of this process.","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"209 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.09.039","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammatory cytokines are pivotal to immune responses. Upon cytokine exposure, cells enter an “alert state” that enhances their visibility to the immune system. Here, we identified an alert-state subpopulation of ribosomes defined by the presence of the P-stalk. We show that P-stalk ribosomes (PSRs) are formed in response to cytokines linked to tumor immunity, and this is at least partially mediated by P-stalk phosphorylation. PSRs are involved in the preferential translation of mRNAs vital for the cytokine response via the more efficient translation of transmembrane domains of receptor molecules involved in cytokine-mediated processes. Importantly, loss of the PSR inhibits CD8+ T cell recognition and killing, and inhibitory cytokines like transforming growth factor β (TGF-β) hinder PSR formation, suggesting that the PSR is a central regulatory hub upon which multiple signals converge. Thus, the PSR is an essential mediator of the cellular rewiring that occurs following cytokine exposure via the translational regulation of this process.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.