{"title":"Shannon Bounds for Quadratic Rate-Distortion Problems","authors":"Michael Gastpar;Erixhen Sula","doi":"10.1109/JSAIT.2024.3465022","DOIUrl":null,"url":null,"abstract":"The Shannon lower bound has been the subject of several important contributions by Berger. This paper surveys Shannon bounds on rate-distortion problems under mean-squared error distortion with a particular emphasis on Berger’s techniques. Moreover, as a new result, the Gray-Wyner network is added to the canon of settings for which such bounds are known. In the Shannon bounding technique, elegant lower bounds are expressed in terms of the source entropy power. Moreover, there is often a complementary upper bound that involves the source variance in such a way that the bounds coincide in the special case of Gaussian statistics. Such pairs of bounds are sometimes referred to as Shannon bounds. The present paper puts Berger’s work on many aspects of this problem in the context of more recent developments, encompassing indirect and remote source coding such as the CEO problem, originally proposed by Berger, as well as the Gray-Wyner network as a new contribution.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"597-608"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10684730/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Shannon lower bound has been the subject of several important contributions by Berger. This paper surveys Shannon bounds on rate-distortion problems under mean-squared error distortion with a particular emphasis on Berger’s techniques. Moreover, as a new result, the Gray-Wyner network is added to the canon of settings for which such bounds are known. In the Shannon bounding technique, elegant lower bounds are expressed in terms of the source entropy power. Moreover, there is often a complementary upper bound that involves the source variance in such a way that the bounds coincide in the special case of Gaussian statistics. Such pairs of bounds are sometimes referred to as Shannon bounds. The present paper puts Berger’s work on many aspects of this problem in the context of more recent developments, encompassing indirect and remote source coding such as the CEO problem, originally proposed by Berger, as well as the Gray-Wyner network as a new contribution.
香农下界是伯杰数次重要贡献的主题。本文研究了均方误差失真条件下速率失真问题的香农下界,并特别强调了伯杰的技术。此外,作为一项新成果,格雷-维纳网络也被添加到已知此类约束的环境中。在香农约束技术中,优雅的下限用源熵功率表示。此外,在高斯统计的特殊情况下,通常会有一个涉及源方差的互补上界,使两者的边界重合。这样的边界对有时被称为香农边界。本文将伯杰在这一问题的许多方面所做的工作与最近的发展结合起来,包括间接和远程源编码,如伯杰最初提出的 CEO 问题,以及作为新贡献的格雷-惠纳网络。