{"title":"A Recurrent Spatio-Temporal Graph Neural Network Based on Latent Time Graph for Multi-Channel Time Series Forecasting","authors":"Linzhi Li;Xiaofeng Zhou;Guoliang Hu;Shuai Li;Dongni Jia","doi":"10.1109/LSP.2024.3479917","DOIUrl":null,"url":null,"abstract":"With the advancement of technology, the field of multi-channel time series forecasting has emerged as a focal point of research. In this context, spatio-temporal graph neural networks have attracted significant interest due to their outstanding performance. An established approach involves integrating graph convolutional networks into recurrent neural networks. However, this approach faces difficulties in capturing dynamic spatial correlations and discerning the correlation of multi-channel time series signals. Another major problem is that the discrete time interval of recurrent neural networks limits the accuracy of spatio-temporal prediction. To address these challenges, we propose a continuous spatio-temporal framework, termed Recurrent Spatio-Temporal Graph Neural Network based on Latent Time Graph (RST-LTG). RST-LTG incorporates adaptive graph convolution networks with a time embedding generator to construct a latent time graph, which subtly captures evolving spatial characteristics by aggregating spatial information across multiple time steps. Additionally, to improve the accuracy of continuous time modeling, we introduce a gate enhanced neural ordinary differential equation that effectively integrates information across multiple scales. Empirical results on four publicly available datasets demonstrate that the RST-LTG model outperforms 19 competing methods in terms of accuracy.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10715638/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With the advancement of technology, the field of multi-channel time series forecasting has emerged as a focal point of research. In this context, spatio-temporal graph neural networks have attracted significant interest due to their outstanding performance. An established approach involves integrating graph convolutional networks into recurrent neural networks. However, this approach faces difficulties in capturing dynamic spatial correlations and discerning the correlation of multi-channel time series signals. Another major problem is that the discrete time interval of recurrent neural networks limits the accuracy of spatio-temporal prediction. To address these challenges, we propose a continuous spatio-temporal framework, termed Recurrent Spatio-Temporal Graph Neural Network based on Latent Time Graph (RST-LTG). RST-LTG incorporates adaptive graph convolution networks with a time embedding generator to construct a latent time graph, which subtly captures evolving spatial characteristics by aggregating spatial information across multiple time steps. Additionally, to improve the accuracy of continuous time modeling, we introduce a gate enhanced neural ordinary differential equation that effectively integrates information across multiple scales. Empirical results on four publicly available datasets demonstrate that the RST-LTG model outperforms 19 competing methods in terms of accuracy.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.