Evaluation of shear resistance of dendritic hydrophobic association polymers

IF 2.6 4区 化学 Q3 POLYMER SCIENCE Journal of Polymer Research Pub Date : 2024-10-21 DOI:10.1007/s10965-024-04177-z
Shijie Zhu, Mei Xu, Shuanglai Yang, Zhuangzhuang Huang, Yang Wang, Yong Zhu
{"title":"Evaluation of shear resistance of dendritic hydrophobic association polymers","authors":"Shijie Zhu,&nbsp;Mei Xu,&nbsp;Shuanglai Yang,&nbsp;Zhuangzhuang Huang,&nbsp;Yang Wang,&nbsp;Yong Zhu","doi":"10.1007/s10965-024-04177-z","DOIUrl":null,"url":null,"abstract":"<div><p>Enhancing the shear resistance of polymer systems is crucial for advancing oil recovery in the realm of chemical flooding technology. This article presents a comparative analysis of the rheological curves, hydrodynamic dimensions, dynamic adsorption, and permeation characteristics of two independently synthesized dendritic hydrophobic association polymers (DHAP) and linear polyacrylamide (HPAM), both before and after exposure to shear in porous media. The research findings indicate that linear polymer solutions exhibit inadequate shear resistance. Through the synergistic effects of association and branching structures, dendritic hydrophobic polymer solutions can partially recover their spatial configuration, thereby mitigating the impact of shear on their solution properties, including viscoelasticity, hydrodynamic size, and adsorption capacity. These polymers can achieve high dynamic retention in porous media and establish flow control capabilities through the residual resistance coefficient. Consequently, further optimization of the molecular structure and the application of non-covalent bonding forces to enhance shear resistance and adsorption retention capacity represent key directions for the future development of polymer systems.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04177-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing the shear resistance of polymer systems is crucial for advancing oil recovery in the realm of chemical flooding technology. This article presents a comparative analysis of the rheological curves, hydrodynamic dimensions, dynamic adsorption, and permeation characteristics of two independently synthesized dendritic hydrophobic association polymers (DHAP) and linear polyacrylamide (HPAM), both before and after exposure to shear in porous media. The research findings indicate that linear polymer solutions exhibit inadequate shear resistance. Through the synergistic effects of association and branching structures, dendritic hydrophobic polymer solutions can partially recover their spatial configuration, thereby mitigating the impact of shear on their solution properties, including viscoelasticity, hydrodynamic size, and adsorption capacity. These polymers can achieve high dynamic retention in porous media and establish flow control capabilities through the residual resistance coefficient. Consequently, further optimization of the molecular structure and the application of non-covalent bonding forces to enhance shear resistance and adsorption retention capacity represent key directions for the future development of polymer systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估树枝状疏水缔合聚合物的抗剪切性
增强聚合物体系的抗剪切性对于提高化学淹没技术领域的石油采收率至关重要。本文比较分析了两种独立合成的树枝状疏水缔合聚合物(DHAP)和线性聚丙烯酰胺(HPAM)在多孔介质中暴露于剪切力之前和之后的流变曲线、流体力学尺寸、动态吸附和渗透特性。研究结果表明,线性聚合物溶液的抗剪切能力不足。通过关联结构和分支结构的协同作用,树枝状疏水性聚合物溶液可以部分恢复其空间构型,从而减轻剪切力对其溶液特性(包括粘弹性、流体力学尺寸和吸附能力)的影响。这些聚合物可在多孔介质中实现高动态滞留,并通过残余阻力系数建立流动控制能力。因此,进一步优化分子结构和应用非共价键力来增强剪切阻力和吸附滞留能力是聚合物系统未来发展的关键方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Polymer Research
Journal of Polymer Research 化学-高分子科学
CiteScore
4.70
自引率
7.10%
发文量
472
审稿时长
3.6 months
期刊介绍: Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology. As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including: polymer synthesis; polymer reactions; polymerization kinetics; polymer physics; morphology; structure-property relationships; polymer analysis and characterization; physical and mechanical properties; electrical and optical properties; polymer processing and rheology; application of polymers; supramolecular science of polymers; polymer composites.
期刊最新文献
Engineering PLA-MXene nanocomposite with balanced mechanical properties for enhanced shape memory effect Study of polymer chain morphologies at and around critical concentrations Mechanical properties and development of silver Nanoparticle-enhanced Alginate-polyacrylamide double network Hydrogel Dynamic properties of microspheres at the nanoscale and mechanisms for their application in enhanced oil recovery Ginkgo biloba leaf extract: A natural and eco-friendly stabilizer for enhancing the thermal and oxidative stability of polyethylene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1