{"title":"Impacts of Soil Aggregation on Nitrogen Storage and Supply in Biomass Incorporated Sandy-Loam Acidic Soil","authors":"Shaon Kumar Das","doi":"10.1007/s11270-024-07584-6","DOIUrl":null,"url":null,"abstract":"<div><p>Soil aggregation plays a critical role in the maintenance of soil nutrient storage and supply. After five years of crop biomass management, field samples from a sandy loam mountain hilly soil were examined for aggregate distribution, physical subfractions within aggregates, and organic nitrogen (N) fractions, such as nonhydrolyzable N (NHN), hydrolysable ammonium N (HAN), amino-sugar N (ASN), amino-acid N (AAN), and hydrolysable unidentified N (HUN). The total N pool and theoretically mineralizable N were used to calculate the soil N storage and supply capacity, respectively. The total N, mineralizable N, and coefficient of mineralisation rate were all considerably raised by crop biomass incorporation. Analysis of covariance structures showed that the organic N fractions had an impact on the supply and storage of N in the soil, with HUN and AAN contributing the most to the potentially mineralizable N and; also HUN and AAN making up the largest portion of the total soil N pool. In comparison to bulk soils that had not had biomass removed, the amounts of organic N components HAN, ASN, AAN, HUN, and NHN were higher by 98.2%, 87.2%, 71.47%, 38.91%, and 43.27%, respectively. Compared to microaggregates, biomass incorporation enhanced soil macroaggregates by 9.37% and had higher organic N percentages and accumulation efficiency. The mineralizable N was significantly correlated with all fractions of N. The inorganic nitrogen and total nitrogen (TN) were higher in 100% biomass inclusion-T<sub>5</sub> (60.01 and 841.58) and lowest in total removal of biomass-T<sub>1</sub> (24.92 and 479.74). The > 2 mm aggregate size significantly contributed more in organic N fractions rather than 2–0.25 mm or less.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"235 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07584-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil aggregation plays a critical role in the maintenance of soil nutrient storage and supply. After five years of crop biomass management, field samples from a sandy loam mountain hilly soil were examined for aggregate distribution, physical subfractions within aggregates, and organic nitrogen (N) fractions, such as nonhydrolyzable N (NHN), hydrolysable ammonium N (HAN), amino-sugar N (ASN), amino-acid N (AAN), and hydrolysable unidentified N (HUN). The total N pool and theoretically mineralizable N were used to calculate the soil N storage and supply capacity, respectively. The total N, mineralizable N, and coefficient of mineralisation rate were all considerably raised by crop biomass incorporation. Analysis of covariance structures showed that the organic N fractions had an impact on the supply and storage of N in the soil, with HUN and AAN contributing the most to the potentially mineralizable N and; also HUN and AAN making up the largest portion of the total soil N pool. In comparison to bulk soils that had not had biomass removed, the amounts of organic N components HAN, ASN, AAN, HUN, and NHN were higher by 98.2%, 87.2%, 71.47%, 38.91%, and 43.27%, respectively. Compared to microaggregates, biomass incorporation enhanced soil macroaggregates by 9.37% and had higher organic N percentages and accumulation efficiency. The mineralizable N was significantly correlated with all fractions of N. The inorganic nitrogen and total nitrogen (TN) were higher in 100% biomass inclusion-T5 (60.01 and 841.58) and lowest in total removal of biomass-T1 (24.92 and 479.74). The > 2 mm aggregate size significantly contributed more in organic N fractions rather than 2–0.25 mm or less.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.