Yong Fan, Wenzhuo Li, Guangdong Yang, Xingxia Wang, Bin Tian, Xiaochun Lu
{"title":"Excavation deformation characteristics of underground caverns across fault fracture zone: a case study at Baihetan hydropower station","authors":"Yong Fan, Wenzhuo Li, Guangdong Yang, Xingxia Wang, Bin Tian, Xiaochun Lu","doi":"10.1007/s10064-024-03949-7","DOIUrl":null,"url":null,"abstract":"<div><p>The right bank plant of Baihetan Hydropower Station has exposed C<sub>4</sub>, C<sub>5</sub>, and other fault fracture zones (FFZs), thereby increasing rock mass instability. In this paper, the effects of the number and location of FFZ on rock mass deformation were analyzed using field monitoring data. In addition, a validated numerical simulation method was employed to discuss the influence of excavation methods and FFZ properties on rock mass deformation. Results show that as the width of the middle pilot tunnel increases, the top arch deformation initially rises and then falls. Excavating the sidewalls first will significantly aggravate the deformation. As the width or dip-angle of FFZ increases or its height from the top arch decreases, the top arch deformation becomes more significant. The first layer excavation of the plant significantly influences the rock mass deformation. The rock mass located more than twice the width of the tunnel is almost unaffected by FFZ. This study is significant for the stability analysis of deep-buried caverns across FFZ.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10064-024-03949-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03949-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The right bank plant of Baihetan Hydropower Station has exposed C4, C5, and other fault fracture zones (FFZs), thereby increasing rock mass instability. In this paper, the effects of the number and location of FFZ on rock mass deformation were analyzed using field monitoring data. In addition, a validated numerical simulation method was employed to discuss the influence of excavation methods and FFZ properties on rock mass deformation. Results show that as the width of the middle pilot tunnel increases, the top arch deformation initially rises and then falls. Excavating the sidewalls first will significantly aggravate the deformation. As the width or dip-angle of FFZ increases or its height from the top arch decreases, the top arch deformation becomes more significant. The first layer excavation of the plant significantly influences the rock mass deformation. The rock mass located more than twice the width of the tunnel is almost unaffected by FFZ. This study is significant for the stability analysis of deep-buried caverns across FFZ.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.