Applying Computational Spectroscopy Methods to Raman Spectra of Dicationic, Imidazolium-Based, Ionic Liquids.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2024-10-22 DOI:10.1021/acs.jpcb.4c03903
Matteo Farina, Flaminia Rondino, Andrea Lapi, Mauro Falconieri, Serena Gagliardi, Isabella Daidone, Caterina Fraschetti, Enrico Bodo, Antonello Filippi
{"title":"Applying Computational Spectroscopy Methods to Raman Spectra of Dicationic, Imidazolium-Based, Ionic Liquids.","authors":"Matteo Farina, Flaminia Rondino, Andrea Lapi, Mauro Falconieri, Serena Gagliardi, Isabella Daidone, Caterina Fraschetti, Enrico Bodo, Antonello Filippi","doi":"10.1021/acs.jpcb.4c03903","DOIUrl":null,"url":null,"abstract":"<p><p>Studying ionic liquids (ILs) through computational methods is one of the ways to accelerate progress in the design of novel and potentially green materials optimized for task-specific applications. Therefore, it is essential to develop simple and cost-effective computational procedures that are able to replicate and predict experimental data. Among these, spectroscopic measurements are of particular relevance since they are often implicated in structure-property relationships, especially in the infrared spectral region, where characteristic absorption and scattering processes due to molecular vibrations are ultimately influenced by the surrounding environment in the condensed phase. In this frame, we validate, <i>vis-à-vis</i> experimental data, an efficient theoretical method to compute the Raman spectra in the liquid phase of four especially synthesized dicationic ionic liquids and to assess the conformational cation/anion contributions to the experimental bands. The computational procedure is based on the assessment of the most probable conformations as evaluated by a computational protocol involving both molecular dynamics and ab initio methods.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c03903","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Studying ionic liquids (ILs) through computational methods is one of the ways to accelerate progress in the design of novel and potentially green materials optimized for task-specific applications. Therefore, it is essential to develop simple and cost-effective computational procedures that are able to replicate and predict experimental data. Among these, spectroscopic measurements are of particular relevance since they are often implicated in structure-property relationships, especially in the infrared spectral region, where characteristic absorption and scattering processes due to molecular vibrations are ultimately influenced by the surrounding environment in the condensed phase. In this frame, we validate, vis-à-vis experimental data, an efficient theoretical method to compute the Raman spectra in the liquid phase of four especially synthesized dicationic ionic liquids and to assess the conformational cation/anion contributions to the experimental bands. The computational procedure is based on the assessment of the most probable conformations as evaluated by a computational protocol involving both molecular dynamics and ab initio methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
Applying Computational Spectroscopy Methods to Raman Spectra of Dicationic, Imidazolium-Based, Ionic Liquids. Memory Effects Explain the Fractional Viscosity Dependence of Rates Associated with Internal Friction: Simple Models and Applications to Butane Dihedral Rotation. Structures of the First Epitaxial Layer Created in Colloidal Heteroepitaxy. Analysis of the Effects of Ionic Liquid Properties on Electrospray Thruster Performance. Dynamic Interplay of Loop Motions Governs the Molecular Level Regulatory Dynamics in Spleen Tyrosine Kinase: Insights from Molecular Dynamics Simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1