{"title":"Enhancing Vaccine Efficacy with Polyethylenimine-Modified Lovastatin-Loaded Nanoparticle Pickering Emulsion Adjuvant.","authors":"Wei Miao, Zuchen Song, Lina Jiao, Ruihong Yu, Deyun Wang, Lan Jin, Xincheng Ge, Yantong Zhou, Zheng Wang, Linjun Han, Jing He, Haifeng Sun, Xiaoxuan Sun, Aqin Zhang, Li Zhang, Zhenguang Liu","doi":"10.1021/acs.molpharmaceut.4c00828","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the potent immunoadjuvant properties of mevalonate pathway inhibitors, their application is constrained by poor solubility and instability. In this study, we developed a cationic nanoparticle-stabilized Pickering emulsion loaded with lovastatin (Lov-PPE), using polyethylenimine (PEI)-modified PLGA nanoparticles and squalene as carriers. The system was prepared and tested by evaluating the physicochemical properties and adjuvant efficacy of the Lov-PPE. Lov-PPE/O demonstrated good particle size distribution and zeta potential, with an adsorption efficiency of up to 73.07%. The immunization results showed that Lov-PPE/O significantly promoted the production of OVA-specific IgG antibodies, activated CD4<sup>+</sup> and CD8<sup>+</sup> T cells, and induced a strong mixed Th1/2 immune response. Additionally, safety assessments indicated that Lov-PPE/O has good <i>in vivo</i> safety. This study demonstrates that the PEI-modified lovastatin PLGA nanoparticle Pickering emulsion (Lov-PPE) is an effective vaccine adjuvant capable of significantly enhancing humoral and cellular immune responses while possessing good safety, offering a new strategy for vaccine formulation development.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"5807-5817"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00828","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the potent immunoadjuvant properties of mevalonate pathway inhibitors, their application is constrained by poor solubility and instability. In this study, we developed a cationic nanoparticle-stabilized Pickering emulsion loaded with lovastatin (Lov-PPE), using polyethylenimine (PEI)-modified PLGA nanoparticles and squalene as carriers. The system was prepared and tested by evaluating the physicochemical properties and adjuvant efficacy of the Lov-PPE. Lov-PPE/O demonstrated good particle size distribution and zeta potential, with an adsorption efficiency of up to 73.07%. The immunization results showed that Lov-PPE/O significantly promoted the production of OVA-specific IgG antibodies, activated CD4+ and CD8+ T cells, and induced a strong mixed Th1/2 immune response. Additionally, safety assessments indicated that Lov-PPE/O has good in vivo safety. This study demonstrates that the PEI-modified lovastatin PLGA nanoparticle Pickering emulsion (Lov-PPE) is an effective vaccine adjuvant capable of significantly enhancing humoral and cellular immune responses while possessing good safety, offering a new strategy for vaccine formulation development.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.