UltraStat: Ultrafast Spectroscopy beyond the Fourier Limit Using Bayesian Inference.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry A Pub Date : 2024-10-24 Epub Date: 2024-10-16 DOI:10.1021/acs.jpca.4c04385
Elad Harel
{"title":"<i>UltraStat</i>: Ultrafast Spectroscopy beyond the Fourier Limit Using Bayesian Inference.","authors":"Elad Harel","doi":"10.1021/acs.jpca.4c04385","DOIUrl":null,"url":null,"abstract":"<p><p>The discrete Fourier transform (dFT) plays a central role in many ultrafast experiments, allowing the recovery of spectroscopic observables from time-domain measurements. In resonant experiments when population relaxation and coherence components of the signal coexist, the dFT is usually preceded by multiexponential fitting to remove the large population term. However, this procedure results in errors in both the recovered decay rates and the line shapes of the coherence spectral components. While other methods such as linear prediction singular value decomposition fit both terms simultaneously, they are limited to specific models that may not represent the true signal. These methods do not allow for systematic noise analysis or error estimation and require <i>a priori</i> knowledge of the signal rank. Here, we describe a general approach to parameter estimation in ultrafast spectroscopy─<i>UltraStat</i>─grounded in Bayesian analysis without the limitations set by Fourier theory. Using simulated, but realistic data, we demonstrate in a statistical sense how <i>UltraStat</i> provides accurate parameter estimation in the presence of many experimental constraints: noise, signal truncation, limited photon budget, and nonuniform sampling. <i>UltraStat</i> provides superior resolution compared to the dFT, up to an order of magnitude in cases where the line shapes are well-approximated. In these cases, we establish that primarily noise, not sampling, limits spectral resolution. Moreover, we show that subsampling may reduce the number of acquired points by 90% compared to the Nyquist-Shannon criteria. <i>UltraStat</i> greatly improves parameter estimation by providing statistically bound spectral and dynamics analysis, pushing the limits of ultrafast science.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"9323-9336"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514019/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c04385","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The discrete Fourier transform (dFT) plays a central role in many ultrafast experiments, allowing the recovery of spectroscopic observables from time-domain measurements. In resonant experiments when population relaxation and coherence components of the signal coexist, the dFT is usually preceded by multiexponential fitting to remove the large population term. However, this procedure results in errors in both the recovered decay rates and the line shapes of the coherence spectral components. While other methods such as linear prediction singular value decomposition fit both terms simultaneously, they are limited to specific models that may not represent the true signal. These methods do not allow for systematic noise analysis or error estimation and require a priori knowledge of the signal rank. Here, we describe a general approach to parameter estimation in ultrafast spectroscopy─UltraStat─grounded in Bayesian analysis without the limitations set by Fourier theory. Using simulated, but realistic data, we demonstrate in a statistical sense how UltraStat provides accurate parameter estimation in the presence of many experimental constraints: noise, signal truncation, limited photon budget, and nonuniform sampling. UltraStat provides superior resolution compared to the dFT, up to an order of magnitude in cases where the line shapes are well-approximated. In these cases, we establish that primarily noise, not sampling, limits spectral resolution. Moreover, we show that subsampling may reduce the number of acquired points by 90% compared to the Nyquist-Shannon criteria. UltraStat greatly improves parameter estimation by providing statistically bound spectral and dynamics analysis, pushing the limits of ultrafast science.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UltraStat:利用贝叶斯推理超越傅立叶极限的超快光谱学。
离散傅立叶变换(dFT)在许多超快实验中发挥着核心作用,它允许从时域测量中恢复光谱观测值。在共振实验中,当信号的种群弛豫和相干成分共存时,dFT 通常先进行多指数拟合,以去除大的种群项。然而,这一过程会导致恢复的衰减率和相干光谱成分的线形出现误差。虽然线性预测奇异值分解等其他方法可以同时拟合两个项,但它们仅限于特定的模型,可能无法代表真实的信号。这些方法无法进行系统噪声分析或误差估计,而且需要先验的信号等级知识。在此,我们介绍一种基于贝叶斯分析的超快光谱参数估计通用方法--UltraStat--不受傅立叶理论的限制。我们使用模拟但真实的数据,从统计学意义上展示了 UltraStat 如何在存在许多实验限制(噪声、信号截断、有限的光子预算和非均匀采样)的情况下提供精确的参数估计。与 dFT 相比,UltraStat 提供了更高的分辨率,在线形近似的情况下,分辨率可达一个数量级。在这些情况下,我们确定主要是噪声而不是采样限制了光谱分辨率。此外,我们还证明,与奈奎斯特-香农标准相比,子采样可减少 90% 的采集点数量。UltraStat 通过提供具有统计学约束的光谱和动力学分析,极大地改进了参数估计,突破了超快科学的极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Bonding Nature of Diabatic Representation in Nonlinear Hydrogen Atom Transfer Reactions. Covalency of the Strong Br···N Halogen Bonds in Neutral and Ionic Complexes. Issue Editorial Masthead Issue Publication Information A Review of 2025 at The Journal of Physical Chemistry A
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1