Souvik Chatterjee, Sabnam Azmi, Nilaj Bandopadhyay, Krishnendu Paramanik, Gayetri Sarkar, Bhaskar Biswas, Hari Sankar Das
{"title":"Benzylamine promoted direct C-H arylation of arenes and heteroarenes <i>via</i> excitation with heat or light.","authors":"Souvik Chatterjee, Sabnam Azmi, Nilaj Bandopadhyay, Krishnendu Paramanik, Gayetri Sarkar, Bhaskar Biswas, Hari Sankar Das","doi":"10.1039/d4ob01377h","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon-halogen bond cleavage in aryl halides through single electron transfer (SET) is a crucial step in radical-based cross-coupling reactions. Accomplishing such cleavage using an organic system without the assistance of any transition metal-based catalyst is highly challenging. In recent years, combining organic molecules and a base has served as a unique system for SET-mediated carbon-halogen bond cleavage. Herein, we report the combination of simple benzylamine and potassium <i>tert</i>-butoxide as a super-electron-donor system for SET-mediated cleavage of aryl halides generating reactive aryl radicals, which subsequently react with arenes or heteroarenes and produce biaryl skeletons. The new methodology enables the arylation of arenes and heteroarenes with aryl iodides, or aryl bromides, upon excitation with heat or light. The broad substrate scope, mild reaction conditions and tolerance of common organic functional groups offer an efficient alternative route for direct C-H arylation reactions.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ob01377h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon-halogen bond cleavage in aryl halides through single electron transfer (SET) is a crucial step in radical-based cross-coupling reactions. Accomplishing such cleavage using an organic system without the assistance of any transition metal-based catalyst is highly challenging. In recent years, combining organic molecules and a base has served as a unique system for SET-mediated carbon-halogen bond cleavage. Herein, we report the combination of simple benzylamine and potassium tert-butoxide as a super-electron-donor system for SET-mediated cleavage of aryl halides generating reactive aryl radicals, which subsequently react with arenes or heteroarenes and produce biaryl skeletons. The new methodology enables the arylation of arenes and heteroarenes with aryl iodides, or aryl bromides, upon excitation with heat or light. The broad substrate scope, mild reaction conditions and tolerance of common organic functional groups offer an efficient alternative route for direct C-H arylation reactions.
通过单电子转移(SET)裂解芳基卤化物中的碳-卤键是基于自由基的交叉偶联反应中的一个关键步骤。在没有任何过渡金属催化剂辅助的情况下,利用有机体系实现这种裂解是极具挑战性的。近年来,有机分子与碱的结合已成为 SET 介导的碳-卤键裂解的独特体系。在此,我们报告了将简单的苄胺和叔丁醇钾结合起来作为超级电子给体系统,用于 SET 介导的芳基卤化物裂解,产生活性芳基自由基,然后与炔烃或杂环烯反应,生成双芳基骨架。在热或光的激发下,新方法可使芳基碘化物或芳基溴化物与炔烃和杂环戊烯发生芳基化反应。该方法的底物范围广、反应条件温和,对常见有机官能团具有耐受性,为直接 C-H 芳基化反应提供了一条高效的替代途径。