Fabrication of bio-inorganic metal nanoparticles by low-cost lychee extract for wastewater remediation: a mini-review.

IF 2.2 4区 医学 Q3 TOXICOLOGY Toxicology Research Pub Date : 2024-10-19 eCollection Date: 2024-10-01 DOI:10.1093/toxres/tfae170
Khalida Naseem, Sana Asghar, Kiky Corneliasari Sembiring, Mohammad Ehtisham Khan, Asima Hameed, Shazma Massey, Warda Hassan, Aneela Anwar, Haneef Khan, Faluk Shair
{"title":"Fabrication of bio-inorganic metal nanoparticles by low-cost lychee extract for wastewater remediation: a mini-review.","authors":"Khalida Naseem, Sana Asghar, Kiky Corneliasari Sembiring, Mohammad Ehtisham Khan, Asima Hameed, Shazma Massey, Warda Hassan, Aneela Anwar, Haneef Khan, Faluk Shair","doi":"10.1093/toxres/tfae170","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This review article gives an overview of the biogenic synthesis of metal nanoparticles (mNPs) while using <i>Litchi chinensis</i> extract as a reducing and stabilizing agent. The subtropical fruit tree i.e lychee contains phytochemicals such as flavonoids, terpenoids, and polyphenolic compounds which act as reducing agents and convert the metal ions into metal atoms that coagulate to form mNPs.</p><p><strong>Methodology: </strong>Different methodologies adopted for the synthesis of lychee extract and its use in the fabrication of mNPs under different reaction conditions such as solvent, extract amount, temperature, and pH of the medium have also been discussed critically in detail.</p><p><strong>Techniques: </strong>Different techniques such as FTIR, UV-visible, XRD, SEM, EDX, and TEM adopted for the analysis of biogenic synthesis of mNPs have also been discussed in detail. Applications of mNPs: Applications of these prepared mNPs in various fields due to their antimicrobial, antiinflammatory, anticancer, and catalytic activities have also been described in detail.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 5","pages":"tfae170"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490315/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfae170","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: This review article gives an overview of the biogenic synthesis of metal nanoparticles (mNPs) while using Litchi chinensis extract as a reducing and stabilizing agent. The subtropical fruit tree i.e lychee contains phytochemicals such as flavonoids, terpenoids, and polyphenolic compounds which act as reducing agents and convert the metal ions into metal atoms that coagulate to form mNPs.

Methodology: Different methodologies adopted for the synthesis of lychee extract and its use in the fabrication of mNPs under different reaction conditions such as solvent, extract amount, temperature, and pH of the medium have also been discussed critically in detail.

Techniques: Different techniques such as FTIR, UV-visible, XRD, SEM, EDX, and TEM adopted for the analysis of biogenic synthesis of mNPs have also been discussed in detail. Applications of mNPs: Applications of these prepared mNPs in various fields due to their antimicrobial, antiinflammatory, anticancer, and catalytic activities have also been described in detail.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用低成本荔枝提取物制造生物无机金属纳米颗粒用于废水修复:微型综述。
简介:这篇综述文章概述了利用荔枝提取物作为还原剂和稳定剂,生物合成金属纳米粒子(mNPs)的过程。亚热带果树荔枝含有黄酮类、萜类和多酚类化合物等植物化学物质,可作为还原剂将金属离子转化为金属原子,并凝结成 mNPs:方法:详细讨论了合成荔枝提取物所采用的不同方法,以及在溶剂、提取物用量、温度和介质 pH 值等不同反应条件下将其用于制造 mNPs 的情况:技术:详细讨论了用于分析 mNPs 生物合成的不同技术,如傅立叶变换红外光谱(FTIR)、紫外可见光、XRD、扫描电子显微镜(SEM)、电子衍射光量子交换(EDX)和电子显微镜(TEM)。mNPs 的应用:还详细介绍了这些制备的 mNPs 因其抗菌、抗炎、抗癌和催化活性而在各个领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxicology Research
Toxicology Research TOXICOLOGY-
CiteScore
3.60
自引率
0.00%
发文量
82
期刊介绍: A multi-disciplinary journal covering the best research in both fundamental and applied aspects of toxicology
期刊最新文献
Unveiling the interspecies correlation and sensitivity factor analysis of rat and mouse acute oral toxicity of antimicrobial agents: first QSTR and QTTR Modeling report. Stress survival and longevity of Caenorhabditis elegans lacking NCS-1. Lipid-core nanocapsules containing simvastatin do not affect the biochemical and hematological indicators of toxicity in rats. Proteomics reveals that nanoplastics with different sizes induce hepatocyte apoptosis in mice through distinct mechanisms involving mitophagy dysregulation and cell cycle arrest. Antibiotic contaminants and their impact in Gingee River, Puducherry: insights from SPE-UPLC-MS/MS and zebrafish study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1