Boosting Coercivity of 3D Printed Hard Magnets through Nano-Modification of the Powder Feedstock.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-10-22 DOI:10.1002/advs.202407972
Philipp Gabriel, Varatharaja Nallathambi, Jianing Liu, Franziska Staab, Timileyin David Oyedeji, Yangyiwei Yang, Nick Hantke, Esmaeil Adabifiroozjaei, Oscar Recalde-Benitez, Leopoldo Molina-Luna, Ziyuan Rao, Baptiste Gault, Jan T Sehrt, Franziska Scheibel, Konstantin Skokov, Bai-Xiang Xu, Karsten Durst, Oliver Gutfleisch, Stephan Barcikowski, Anna Rosa Ziefuss
{"title":"Boosting Coercivity of 3D Printed Hard Magnets through Nano-Modification of the Powder Feedstock.","authors":"Philipp Gabriel, Varatharaja Nallathambi, Jianing Liu, Franziska Staab, Timileyin David Oyedeji, Yangyiwei Yang, Nick Hantke, Esmaeil Adabifiroozjaei, Oscar Recalde-Benitez, Leopoldo Molina-Luna, Ziyuan Rao, Baptiste Gault, Jan T Sehrt, Franziska Scheibel, Konstantin Skokov, Bai-Xiang Xu, Karsten Durst, Oliver Gutfleisch, Stephan Barcikowski, Anna Rosa Ziefuss","doi":"10.1002/advs.202407972","DOIUrl":null,"url":null,"abstract":"<p><p>The demand for strong, compact permanent magnets essential for the energy transition drives innovation in magnet manufacturing. Additive manufacturing, particularly Powder Bed Fusion of metals using a laser beam (PBF-LB/M), offers potential for near-net-shaped Nd-Fe-B permanent magnets but often falls short compared to conventional methods. A less explored strategy to enhance these magnets is feedstock modification with nanoparticles. It is demonstrated that modifying a Nd-Fe-B-based feedstock with 1 wt.% Ag nanoparticles boost the coercivity of the magnets to a record value of 935 ± 6 kA m<sup>-1</sup> without further post-processing or heat treatments. Suitable volumetric energy densities for the PBF-LB/M process are determined using finite element simulations predicting melt pool behavior and part density. Microstructural analyses reveal finer grain sizes and more equiaxed nanocrystalline structures due to the modification. Atom probe tomography identifies three phases in the Ag-modified samples, with Ag forming nanophase regions with rare-earth elements near the amorphous Zr-Ti-B-rich intergranular phase, potentially decoupling the Nd<sub>2</sub>Fe<sub>14</sub>B primary phase. The study shows that superior magnetic properties primarily result from microstructure modification rather than part density. These findings highlight inventive material design approaches via feedstock surface modification to achieve superior magnetic performance in additively manufactured Nd-Fe-B magnets.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202407972","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for strong, compact permanent magnets essential for the energy transition drives innovation in magnet manufacturing. Additive manufacturing, particularly Powder Bed Fusion of metals using a laser beam (PBF-LB/M), offers potential for near-net-shaped Nd-Fe-B permanent magnets but often falls short compared to conventional methods. A less explored strategy to enhance these magnets is feedstock modification with nanoparticles. It is demonstrated that modifying a Nd-Fe-B-based feedstock with 1 wt.% Ag nanoparticles boost the coercivity of the magnets to a record value of 935 ± 6 kA m-1 without further post-processing or heat treatments. Suitable volumetric energy densities for the PBF-LB/M process are determined using finite element simulations predicting melt pool behavior and part density. Microstructural analyses reveal finer grain sizes and more equiaxed nanocrystalline structures due to the modification. Atom probe tomography identifies three phases in the Ag-modified samples, with Ag forming nanophase regions with rare-earth elements near the amorphous Zr-Ti-B-rich intergranular phase, potentially decoupling the Nd2Fe14B primary phase. The study shows that superior magnetic properties primarily result from microstructure modification rather than part density. These findings highlight inventive material design approaches via feedstock surface modification to achieve superior magnetic performance in additively manufactured Nd-Fe-B magnets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过对粉末原料进行纳米改性提高 3D 打印硬磁体的矫顽力。
能源转型对强力、紧凑型永久磁铁的需求推动了磁铁制造领域的创新。快速成型技术,特别是使用激光束的金属粉末床熔融技术(PBF-LB/M),为近网状钕铁硼永磁体的制造提供了潜力,但与传统方法相比往往存在不足。一种较少被探索的增强这些磁体的策略是用纳米颗粒对原料进行改性。研究表明,用 1 wt.% 的银纳米粒子改性钕铁硼基原料可将磁体的矫顽力提高到 935 ± 6 kA m-1 的创纪录值,而无需进一步的后处理或热处理。通过预测熔池行为和零件密度的有限元模拟,确定了 PBF-LB/M 工艺的合适体积能量密度。微观结构分析表明,由于改性,晶粒尺寸更细,纳米晶结构更等轴。原子探针层析技术确定了银改性样品中的三相,其中银在非晶态富含 Zr-Ti-B 的晶间相附近与稀土元素形成纳米相区,可能与 Nd2Fe14B 主相脱钩。研究表明,优异的磁性能主要来自微观结构的改变,而不是零件密度。这些发现凸显了通过原料表面改性实现增材制造钕铁硼磁体优异磁性能的创新材料设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
CD169+ Macrophages Mediate the Immune Response of Allergic Rhinitis Through the Keap1/Nrf2/HO-1 Axis. Challenges and Prospects of Low-Temperature Rechargeable Batteries: Electrolytes, Interfaces, and Electrodes. Chronic Exposure to Bioaerosols in PM2.5 from Garbage Stations Accelerates Vascular Aging via the NF-κB/NLRP3 Pathway. Correction to "A High-Density Hydrogen Bond Locking Strategy for Constructing Anisotropic High-Strength Hydrogel-Based Meniscus Substitute". Correction to Cholesterol-Amino-Phosphate (CAP) Derived Lipid Nanoparticles for Delivery of Self-Amplifying RNA and Restoration of Spermatogenesis in Infertile Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1