The N6-methyladenosine landscape of ovarian development and aging highlights the regulation by RNA stability and chromatin state.

IF 8 1区 医学 Q1 CELL BIOLOGY Aging Cell Pub Date : 2024-10-15 DOI:10.1111/acel.14376
Xiujuan Hu, Jiafeng Lu, Chenyue Ding, Jincheng Li, Qinyan Zou, Wenjuan Xia, Chunfeng Qian, Hong Li, Boxian Huang
{"title":"The N6-methyladenosine landscape of ovarian development and aging highlights the regulation by RNA stability and chromatin state.","authors":"Xiujuan Hu, Jiafeng Lu, Chenyue Ding, Jincheng Li, Qinyan Zou, Wenjuan Xia, Chunfeng Qian, Hong Li, Boxian Huang","doi":"10.1111/acel.14376","DOIUrl":null,"url":null,"abstract":"<p><p>The versatile epigenetic modification known as N6-methyladenosine (m<sup>6</sup>A) has been demonstrated to be pivotal in numerous physiological and pathological contexts. Nonetheless, the precise regulatory mechanisms linking m<sup>6</sup>A to histone modifications and the involvement of transposable elements (TEs) in ovarian development and aging are still not completely understood. First, we discovered that m<sup>6</sup>A modifications are highly expressed during ovarian aging (OA), with significant contributions from decreased m<sup>6</sup>A demethylase FTO and overexpressed m<sup>6</sup>A methyltransferase METTL16. Then, using FTO knockout mouse model and KGN cell line, we also observed that FTO deletion and METTL16 overexpression significantly increased m<sup>6</sup>A levels. This led to the downregulation of the methyltransferase SUV39H1, resulting in reduced H3K9me3 expression. The downregulation of SUV39H1 and H3K9me3 primarily activated LTR7 and LTR12, subsequently activating ERV1. This resulted in a decrease in cell proliferation, while the levels of apoptosis, cellular aging markers, and autophagy markers significantly increased in OA. In summary, our study offers intriguing insights into the role of m<sup>6</sup>A in regulating DNA epigenetics, including H3K9me3 and TEs, as well as autophagy, thereby accelerating OA.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14376"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14376","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The versatile epigenetic modification known as N6-methyladenosine (m6A) has been demonstrated to be pivotal in numerous physiological and pathological contexts. Nonetheless, the precise regulatory mechanisms linking m6A to histone modifications and the involvement of transposable elements (TEs) in ovarian development and aging are still not completely understood. First, we discovered that m6A modifications are highly expressed during ovarian aging (OA), with significant contributions from decreased m6A demethylase FTO and overexpressed m6A methyltransferase METTL16. Then, using FTO knockout mouse model and KGN cell line, we also observed that FTO deletion and METTL16 overexpression significantly increased m6A levels. This led to the downregulation of the methyltransferase SUV39H1, resulting in reduced H3K9me3 expression. The downregulation of SUV39H1 and H3K9me3 primarily activated LTR7 and LTR12, subsequently activating ERV1. This resulted in a decrease in cell proliferation, while the levels of apoptosis, cellular aging markers, and autophagy markers significantly increased in OA. In summary, our study offers intriguing insights into the role of m6A in regulating DNA epigenetics, including H3K9me3 and TEs, as well as autophagy, thereby accelerating OA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卵巢发育和衰老的 N6-甲基腺苷图谱突出了 RNA 稳定性和染色质状态的调控作用。
N6-甲基腺苷(m6A)这种多功能的表观遗传修饰已被证明在许多生理和病理环境中起着关键作用。然而,m6A与组蛋白修饰之间的确切调控机制以及转座元件(TE)在卵巢发育和衰老中的参与仍未完全明了。首先,我们发现在卵巢衰老(OA)过程中,m6A修饰高度表达,其中m6A去甲基化酶FTO的减少和m6A甲基转移酶METTL16的过表达做出了重要贡献。随后,我们利用 FTO 基因敲除小鼠模型和 KGN 细胞系观察到,FTO 缺失和 METTL16 过表达显著增加了 m6A 水平。这导致了甲基转移酶 SUV39H1 的下调,从而降低了 H3K9me3 的表达。SUV39H1 和 H3K9me3 的下调主要激活了 LTR7 和 LTR12,随后激活了 ERV1。这导致 OA 中细胞增殖减少,而细胞凋亡、细胞衰老标志物和自噬标志物的水平显著增加。总之,我们的研究提供了关于 m6A 在调节 DNA 表观遗传学(包括 H3K9me3 和 TEs)以及自噬中的作用的有趣见解,从而加速了 OA 的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aging Cell
Aging Cell Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍: Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health. The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include: Academic Search (EBSCO Publishing) Academic Search Alumni Edition (EBSCO Publishing) Academic Search Premier (EBSCO Publishing) Biological Science Database (ProQuest) CAS: Chemical Abstracts Service (ACS) Embase (Elsevier) InfoTrac (GALE Cengage) Ingenta Select ISI Alerting Services Journal Citation Reports/Science Edition (Clarivate Analytics) MEDLINE/PubMed (NLM) Natural Science Collection (ProQuest) PubMed Dietary Supplement Subset (NLM) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) Web of Science (Clarivate Analytics) Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.
期刊最新文献
Residual microglia following short-term PLX5622 treatment in 5xFAD mice exhibit diminished NLRP3 inflammasome and mTOR signaling, and enhanced autophagy. Isolating the direct effects of growth hormone on lifespan and metabolism in mice. The soil Mycobacterium sp. promotes health and longevity through different bacteria-derived molecules in Caenorhabditis elegans. Correction to "Higher expression of denervation-responsive genes is negatively associated with muscle volume and performance traits in the study of muscle, mobility, and aging (SOMMA)". A small-molecule screen identifies novel aging modulators by targeting 5-HT/DA signaling pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1