Boosting the Performance and Durability of Fe-N-C Fuel Cell Catalysts via Integrating Mo2C Clusters.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-10-18 DOI:10.1002/smtd.202401270
Liming Guo, Xin Wan, Xiaofang Liu, Jiaxiang Shang, Ronghai Yu, Jianglan Shui
{"title":"Boosting the Performance and Durability of Fe-N-C Fuel Cell Catalysts via Integrating Mo<sub>2</sub>C Clusters.","authors":"Liming Guo, Xin Wan, Xiaofang Liu, Jiaxiang Shang, Ronghai Yu, Jianglan Shui","doi":"10.1002/smtd.202401270","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon-supported nitrogen-coordinated iron single-atom (Fe-N-C) catalysts have been regarded among the most promising platinum-group-metal-free catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). Nevertheless, their limited intrinsic activity and unsatisfactory stability have hindered their practical applications. Here, it is reported that the integration of Mo<sub>2</sub>C clusters effectively enhances the ORR activity and stability of Fe-N-C catalysts. The composite catalyst of Fe single atoms and Mo<sub>2</sub>C clusters co-embedded on nitrogen-doped carbon (Fe<sub>SA</sub>/Mo<sub>2</sub>C-NC) exhibits an excellent ORR activity with a half-wave potential of 0.82 V in acidic media and a high peak power density of 0.5 W cm<sup>-2</sup> in an H<sub>2</sub>-air PEMFC. Moreover, improved stability is achieved with nearly no decay under H<sub>2</sub>-air conditions for 80 h at 0.4 V. Experiments with theoretical calculations elucidate that the etching effect of the phosphomolybdic acid precursor optimizes the pore size distribution of the composite catalyst, thereby exposing more active sites. The Mo<sub>2</sub>C clusters modulate the electronic configuration of the Fe-N<sub>4</sub> sites, optimizing adsorption energy for ORR intermediates and strengthening the Fe-N bond to mitigate demetalation. This work provides valuable insights into the construction of single-atom/nanoaggregate hybrid catalysts for efficient energy-related applications.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401270"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401270","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon-supported nitrogen-coordinated iron single-atom (Fe-N-C) catalysts have been regarded among the most promising platinum-group-metal-free catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). Nevertheless, their limited intrinsic activity and unsatisfactory stability have hindered their practical applications. Here, it is reported that the integration of Mo2C clusters effectively enhances the ORR activity and stability of Fe-N-C catalysts. The composite catalyst of Fe single atoms and Mo2C clusters co-embedded on nitrogen-doped carbon (FeSA/Mo2C-NC) exhibits an excellent ORR activity with a half-wave potential of 0.82 V in acidic media and a high peak power density of 0.5 W cm-2 in an H2-air PEMFC. Moreover, improved stability is achieved with nearly no decay under H2-air conditions for 80 h at 0.4 V. Experiments with theoretical calculations elucidate that the etching effect of the phosphomolybdic acid precursor optimizes the pore size distribution of the composite catalyst, thereby exposing more active sites. The Mo2C clusters modulate the electronic configuration of the Fe-N4 sites, optimizing adsorption energy for ORR intermediates and strengthening the Fe-N bond to mitigate demetalation. This work provides valuable insights into the construction of single-atom/nanoaggregate hybrid catalysts for efficient energy-related applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过整合 Mo2C 簇提升 Fe-N-C 燃料电池催化剂的性能和耐用性。
碳支撑氮配位铁单原子(Fe-N-C)催化剂一直被认为是质子交换膜燃料电池(PEMFC)中最有前途的氧还原反应(ORR)无铂族金属催化剂之一。然而,它们有限的内在活性和不尽人意的稳定性阻碍了它们的实际应用。据报道,Mo2C 团簇的加入有效提高了 Fe-N-C 催化剂的 ORR 活性和稳定性。在掺氮碳(FeSA/Mo2C-NC)上共嵌铁单原子和 Mo2C 团簇的复合催化剂表现出优异的 ORR 活性,在酸性介质中的半波电位为 0.82 V,在 H2-air PEMFC 中的峰值功率密度高达 0.5 W cm-2。此外,稳定性也得到了提高,在 0.4 V 的氢空气条件下,80 小时内几乎没有衰减。实验和理论计算阐明,磷钼酸前驱体的蚀刻效应优化了复合催化剂的孔径分布,从而暴露出更多的活性位点。Mo2C 团簇调节了 Fe-N4 位点的电子构型,优化了 ORR 中间体的吸附能,并加强了 Fe-N 键以减轻脱金属现象。这项工作为构建单原子/纳米团聚体混合催化剂以实现高效的能源相关应用提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Circular Adhesion Substrates Inhibiting Cell Polarization and Proliferation via Graded Texture of Geometric Micropatterns. How the Kinetic Balance Between Charge-Transfer and Mass-Transfer Influences Zinc Anode Stability: An Ultramicroelectrode Study. Label-Free Prediction of Tumor Metastatic Potential via Ramanome. Tuning the Sensitivity of MoS2 Nanopores: From Labeling to Labeling-Free Detection of DNA Methylation. Interface Engineering of Network-Like 1D/2D (NHCNT/Ni─MOF) Hybrid Nanoarchitecture for Electrocatalytic Water Splitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1