Li Guan , Yanxin Xia , Pengfei Song , Huiru Zhao , Shengjie Zhang , Wanzhen Su , Aiyun Li , Weize Li
{"title":"Novel bibenzyl compound 8Ae induces apoptosis and inhibits glycolysis by detaching hexokinase 2 from mitochondria in A549 cells","authors":"Li Guan , Yanxin Xia , Pengfei Song , Huiru Zhao , Shengjie Zhang , Wanzhen Su , Aiyun Li , Weize Li","doi":"10.1016/j.bmc.2024.117955","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigated the anticancer effect and the mechanism of our newly synthesized bibenzyl 8Ae against human lung cancer A549 cells. Compound 8Ae could induce apoptosis by inhibiting the glycolysis in A549 cells. Hexokinase 2 (HK2), the first key enzyme in glycolysis process, was significantly down-regulated by 8Ae. Besides, compound 8Ae induced HK2 dissociated from mitochondria to cytosol, which could be induced by inhibiting the phosphorylation of Akt. In addition, 8Ae could induce mitochondrial-mediated apoptosis, and mitochondrial membrane potential (MMP) was decreased. After 8Ae treatment, the Bax/Bcl-2 ratio was increased and cytochrome <em>c</em> (Cyt <em>c</em>) was release from mitochondria to cytosol. Molecular docking indicated that 8Ae have an interaction with HK2 by extending into acitve pockets of the protein to form stable hydrogen bonds. Additionally, 8Ae had significantly improved pharmacokinetic properties through the prediction, comparison, and analysis of the ADMET properties of 8Ae and moscatilin (MST). Taken together, 8Ae might inhibit glycolysis by stimulating the shedding of HK2 from mitochondria and promoting mitochondria-regulated apoptosis to inhibit the proliferation of A549 cells. This article provides a research basis for bibenzyl compounds as new small molecule drugs for lung cancer.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"114 ","pages":"Article 117955"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089624003699","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigated the anticancer effect and the mechanism of our newly synthesized bibenzyl 8Ae against human lung cancer A549 cells. Compound 8Ae could induce apoptosis by inhibiting the glycolysis in A549 cells. Hexokinase 2 (HK2), the first key enzyme in glycolysis process, was significantly down-regulated by 8Ae. Besides, compound 8Ae induced HK2 dissociated from mitochondria to cytosol, which could be induced by inhibiting the phosphorylation of Akt. In addition, 8Ae could induce mitochondrial-mediated apoptosis, and mitochondrial membrane potential (MMP) was decreased. After 8Ae treatment, the Bax/Bcl-2 ratio was increased and cytochrome c (Cyt c) was release from mitochondria to cytosol. Molecular docking indicated that 8Ae have an interaction with HK2 by extending into acitve pockets of the protein to form stable hydrogen bonds. Additionally, 8Ae had significantly improved pharmacokinetic properties through the prediction, comparison, and analysis of the ADMET properties of 8Ae and moscatilin (MST). Taken together, 8Ae might inhibit glycolysis by stimulating the shedding of HK2 from mitochondria and promoting mitochondria-regulated apoptosis to inhibit the proliferation of A549 cells. This article provides a research basis for bibenzyl compounds as new small molecule drugs for lung cancer.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.