Gradient Thermal Annealing Assisted Perovskite Film Crystallization Regulation for Efficient and Stable Photovoltaic-Photodetection Bifunctional Device.
{"title":"Gradient Thermal Annealing Assisted Perovskite Film Crystallization Regulation for Efficient and Stable Photovoltaic-Photodetection Bifunctional Device.","authors":"Zhiyu Wang, Peng Chen, Jianwen Luo, Zexian Ouyang, Mulin Sun, Qin Hu, Weiguang Xie, Pengyi Liu, Ke Chen","doi":"10.1002/smtd.202401098","DOIUrl":null,"url":null,"abstract":"<p><p>Perovskite crystallization regulation is essential to obtain excellent film optoelectronic properties and device performances. However, rapid crystallization during annealing always results in poor perovskite film and easy formation of trap, thereby greatly restricting device performance due to severe non-radiative recombination. Here, an easy and reproducible gradient thermal annealing (GTA) approach is used to regulate the perovskite crystallization. Through a low-temperature initial annealing of GTA, the solvent evaporation is slowed down, thus extending nucleation time and providing a buffer for the rapid crystallization of perovskite grains in the subsequent high-temperature stage. As a result, completely converted and highly crystalline perovskite is obtained with 1.6 times larger grain size, reduced trap density and suppressed non-radiative recombination of photo-generated carriers. The film crystallinity is also enhanced with more advantageous (100) and (111) lattice facets which are favorable for carrier transport. Consequently, the perovskite photodetectors exhibit a large linear dynamic range of 174 dB and an excellent response even under ultra-weak light of 303 pW. Meanwhile, perovskite solar cells achieved increased PCE and maintained 85% of original efficiency after heating at 65 °C for nearly 1000 h under unencapsulated conditions. To the knowledge, this represents the best performance reported for a perovskite photovoltaic-photodetection bifunctional device.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401098"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401098","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite crystallization regulation is essential to obtain excellent film optoelectronic properties and device performances. However, rapid crystallization during annealing always results in poor perovskite film and easy formation of trap, thereby greatly restricting device performance due to severe non-radiative recombination. Here, an easy and reproducible gradient thermal annealing (GTA) approach is used to regulate the perovskite crystallization. Through a low-temperature initial annealing of GTA, the solvent evaporation is slowed down, thus extending nucleation time and providing a buffer for the rapid crystallization of perovskite grains in the subsequent high-temperature stage. As a result, completely converted and highly crystalline perovskite is obtained with 1.6 times larger grain size, reduced trap density and suppressed non-radiative recombination of photo-generated carriers. The film crystallinity is also enhanced with more advantageous (100) and (111) lattice facets which are favorable for carrier transport. Consequently, the perovskite photodetectors exhibit a large linear dynamic range of 174 dB and an excellent response even under ultra-weak light of 303 pW. Meanwhile, perovskite solar cells achieved increased PCE and maintained 85% of original efficiency after heating at 65 °C for nearly 1000 h under unencapsulated conditions. To the knowledge, this represents the best performance reported for a perovskite photovoltaic-photodetection bifunctional device.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.