Synchrotron Radiation: A Key Tool for Drug Discovery

IF 2.5 4区 医学 Q3 CHEMISTRY, MEDICINAL Bioorganic & Medicinal Chemistry Letters Pub Date : 2024-10-13 DOI:10.1016/j.bmcl.2024.129990
Fengcheng Li , Runze Liu , Wenjun Li , Mingyuan Xie , Song Qin
{"title":"Synchrotron Radiation: A Key Tool for Drug Discovery","authors":"Fengcheng Li ,&nbsp;Runze Liu ,&nbsp;Wenjun Li ,&nbsp;Mingyuan Xie ,&nbsp;Song Qin","doi":"10.1016/j.bmcl.2024.129990","DOIUrl":null,"url":null,"abstract":"<div><div>Synchrotron radiation is extensively utilized in the domains of materials science, physical chemistry, and life science, resulting from its high intensity, exceptional monochromaticity, superior collimation, and broad wave spectrum. This top-notch light source has also made significant contributions to the progress of biomedicine. The advancement of synchrotron radiation-based X-ray and protein crystallography technologies has created new prospects for drug discovery. These innovative techniques have opened up exciting avenues in the field. The investigation of protein crystal structures and the elucidation of the spatial configuration of biological macromolecules have revealed intricate details regarding the modes of protein binding. Furthermore, the screening of crystal polymorphs and ligands has laid the groundwork for rational drug modification and the improvement of drug physicochemical properties. As science and technology continue to advance, the techniques for analyzing structures using synchrotron radiation sources and the design of corresponding crystallographic beamline stations are undergoing continuous enhancement. These cutting-edge tools and facilities are expected to expedite the drug development process and rectify the current situation of a lack of targeted drugs.</div></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"114 ","pages":"Article 129990"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960894X24003925","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Synchrotron radiation is extensively utilized in the domains of materials science, physical chemistry, and life science, resulting from its high intensity, exceptional monochromaticity, superior collimation, and broad wave spectrum. This top-notch light source has also made significant contributions to the progress of biomedicine. The advancement of synchrotron radiation-based X-ray and protein crystallography technologies has created new prospects for drug discovery. These innovative techniques have opened up exciting avenues in the field. The investigation of protein crystal structures and the elucidation of the spatial configuration of biological macromolecules have revealed intricate details regarding the modes of protein binding. Furthermore, the screening of crystal polymorphs and ligands has laid the groundwork for rational drug modification and the improvement of drug physicochemical properties. As science and technology continue to advance, the techniques for analyzing structures using synchrotron radiation sources and the design of corresponding crystallographic beamline stations are undergoing continuous enhancement. These cutting-edge tools and facilities are expected to expedite the drug development process and rectify the current situation of a lack of targeted drugs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同步辐射:药物发现的关键工具。
同步辐射因其高强度、优异的单色性、卓越的准直性和宽广的波谱而被广泛应用于材料科学、物理化学和生命科学领域。这种顶级光源还为生物医学的进步做出了重大贡献。基于同步辐射的 X 射线和蛋白质晶体学技术的发展为药物发现开辟了新的前景。这些创新技术为该领域开辟了令人兴奋的道路。蛋白质晶体结构的研究和生物大分子空间构型的阐明揭示了蛋白质结合模式的复杂细节。此外,晶体多态性和配体的筛选也为药物的合理修饰和药物理化性质的改善奠定了基础。随着科学技术的不断进步,利用同步辐射源分析结构的技术和相应的晶体学光束线站的设计也在不断改进。这些前沿工具和设施有望加快药物开发进程,改善目前缺乏靶向药物的状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
3.70%
发文量
463
审稿时长
27 days
期刊介绍: Bioorganic & Medicinal Chemistry Letters presents preliminary experimental or theoretical research results of outstanding significance and timeliness on all aspects of science at the interface of chemistry and biology and on major advances in drug design and development. The journal publishes articles in the form of communications reporting experimental or theoretical results of special interest, and strives to provide maximum dissemination to a large, international audience.
期刊最新文献
Discovery of novel cyclopentane carboxylic acids as potent and selective inhibitors of NaV1.7. Synthesis and Structure-Activity relationship of covalent inhibitors of SARS-CoV-2 papain-like protease with antiviral potency. Design, synthesis and bioactivity evaluation of cinnamic acid derivatives as potential anti-inflammatory agents against LPS-induced acute lung injury. Switching off cancer - An overview of G-quadruplex and i-motif functional role in oncogene expression. Synthesis and evaluation of anti-Giardia activity of oseltamivir analogs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1