Zincophilic host with lattice plane matching enables stable zinc anodes in aqueous zinc-ion batteries.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-02-01 Epub Date: 2024-10-14 DOI:10.1016/j.jcis.2024.10.062
Zhu Liu, Pengshu Yi, Longli Ma, Yuhang Yuan, Yuan Wang, Chuming Ye, Mingxin Ye, Jianfeng Shen
{"title":"Zincophilic host with lattice plane matching enables stable zinc anodes in aqueous zinc-ion batteries.","authors":"Zhu Liu, Pengshu Yi, Longli Ma, Yuhang Yuan, Yuan Wang, Chuming Ye, Mingxin Ye, Jianfeng Shen","doi":"10.1016/j.jcis.2024.10.062","DOIUrl":null,"url":null,"abstract":"<p><p>The practical application of aqueous zinc-ion batteries (AZBs) as attractive energy storage devices is severely hampered by the uncontrollable zinc dendrite growth on the metal anode. Here, a lightweight and flexible free-standing membrane of MXene/Ag nanowires (AgNWs) was synthesized via vacuum filtration to support the zinc anode. The 3D cross-linked network structure provides ample space for densely packed zinc electrodeposition. Zincophilic AgNWs that exhibit a low lattice plane mismatch with zinc lower the nucleation barrier for zinc, inducing uniform nucleation and lateral growth of zinc on the substrate. In addition, the 3D network framework effectively reduces the local current density and area capacity of the anode, creating a uniform electric field that is not conducive to zinc dendrite formation. Consequently, the highly reversible Zn@MXene/AgNWs composite anode exhibits long cycle stability of 1000 h at 2.0 mA cm<sup>-2</sup>, 1.0 mAh cm<sup>-2</sup> in the symmetrical battery. The full battery assembled with a sodium vanadate (NVO) cathode demonstrates excellent rate performance and long cycle life (2000 cycles at 5.0 A/g). The design of zincophilic hosts with high lattice plane matching provides a promising strategy for realizing dendrite-free zinc anodes for AZBs.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"679 Pt A","pages":"1231-1241"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.10.062","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The practical application of aqueous zinc-ion batteries (AZBs) as attractive energy storage devices is severely hampered by the uncontrollable zinc dendrite growth on the metal anode. Here, a lightweight and flexible free-standing membrane of MXene/Ag nanowires (AgNWs) was synthesized via vacuum filtration to support the zinc anode. The 3D cross-linked network structure provides ample space for densely packed zinc electrodeposition. Zincophilic AgNWs that exhibit a low lattice plane mismatch with zinc lower the nucleation barrier for zinc, inducing uniform nucleation and lateral growth of zinc on the substrate. In addition, the 3D network framework effectively reduces the local current density and area capacity of the anode, creating a uniform electric field that is not conducive to zinc dendrite formation. Consequently, the highly reversible Zn@MXene/AgNWs composite anode exhibits long cycle stability of 1000 h at 2.0 mA cm-2, 1.0 mAh cm-2 in the symmetrical battery. The full battery assembled with a sodium vanadate (NVO) cathode demonstrates excellent rate performance and long cycle life (2000 cycles at 5.0 A/g). The design of zincophilic hosts with high lattice plane matching provides a promising strategy for realizing dendrite-free zinc anodes for AZBs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
晶格面匹配的亲锌宿主可在锌离子水电池中实现稳定的锌阳极。
锌离子水电池(AZBs)作为一种极具吸引力的储能设备,其实际应用受到金属阳极上难以控制的锌枝晶生长的严重阻碍。在这里,我们通过真空过滤合成了一种轻质、灵活的 MXene/Ag 纳米线(AgNWs)独立膜,用于支撑锌阳极。三维交联网络结构为密集的锌电沉积提供了充足的空间。嗜锌 AgNWs 与锌的晶格平面错配度较低,从而降低了锌的成核障碍,促使锌在基底上均匀成核并横向生长。此外,三维网络框架有效降低了阳极的局部电流密度和面积容量,形成了不利于锌枝晶形成的均匀电场。因此,高度可逆的 Zn@MXene/AgNWs 复合阳极在 2.0 mA cm-2 和对称电池中 1.0 mAh cm-2 的条件下表现出 1000 小时的长循环稳定性。与钒酸钠(NVO)阴极组装在一起的完整电池表现出卓越的速率性能和长循环寿命(在 5.0 A/g 条件下循环 2000 次)。设计具有高度晶格面匹配的亲锌基体为实现 AZB 无枝晶锌阳极提供了一种前景广阔的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
A novel strategy to improve the electrochemical properties of in-situ polymerized 1,3-dioxolane electrolyte in lithium metal batteries. Coupling multifunctional ZnCoAl-layered double hydroxides on Ti-Fe2O3 photoanode for efficient photoelectrochemical water oxidation. In-situ construction of high-performance artificial solid electrolyte interface layer on anode surfaces for anode-free lithium metal batteries. Manipulating the d-band center of bimetallic molybdenum vanadate for high performance aqueous zinc-ion battery. Separator modification with a high-entropy hydroxyphosphate, Co0.29Ni0.15Fe0.33Cu0.16Ca3.9(PO4)3(OH), for high-performance Li-S batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1