{"title":"Sensitive determination of volatile nitrosamines with ambient pressure ammonium-adduct ionization mass spectrometry.","authors":"Lian Duan, Cheng Wang, Yuwei Li, Binwang Yang, Xiuqing Zheng, Jiaxu Liu, Guoxing Jing, Wenjie Liu, Jianna Yu","doi":"10.1007/s00216-024-05580-7","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the control of volatile N-nitrosamines (NAs) has been of interest in the pharmaceutical and food industries, as many of these compounds are probable human carcinogens. Thus, rapid and trace-level quantitative determination methods are in urgent demand. In this work, ambient pressure ammonium-adduct ionization mass spectrometry was proposed for the sensitive detection of volatile nitrosamines in various pharmaceutical headspaces. The ammonium ions produced through electrospray ionization acted as reactant ions for NAs to generate ammonium-NA adduct ions and underwent in-source collision-induced dissociation to produce protonated NAs, which were detected by mass spectrometry. The ionization selectivity and sensitivity for various volatile NAs were improved significantly using the developed method, which was demonstrated by the limit of quantification (LOQ) below 52 ng L<sup>-1</sup> for all NAs, and the quantitative performance was consequently improved. Different NAs exhibited almost equimolar response using NH<sub>4</sub><sup>+</sup> as the reactant ion, with at least a twofold enhancement in intensity for the individual compounds relative to when using H<sup>+</sup> as the reactant ion. The proposed method is a rapid, sensitive, and environmentally economical approach that uses few reagents.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"6839-6847"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05580-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the control of volatile N-nitrosamines (NAs) has been of interest in the pharmaceutical and food industries, as many of these compounds are probable human carcinogens. Thus, rapid and trace-level quantitative determination methods are in urgent demand. In this work, ambient pressure ammonium-adduct ionization mass spectrometry was proposed for the sensitive detection of volatile nitrosamines in various pharmaceutical headspaces. The ammonium ions produced through electrospray ionization acted as reactant ions for NAs to generate ammonium-NA adduct ions and underwent in-source collision-induced dissociation to produce protonated NAs, which were detected by mass spectrometry. The ionization selectivity and sensitivity for various volatile NAs were improved significantly using the developed method, which was demonstrated by the limit of quantification (LOQ) below 52 ng L-1 for all NAs, and the quantitative performance was consequently improved. Different NAs exhibited almost equimolar response using NH4+ as the reactant ion, with at least a twofold enhancement in intensity for the individual compounds relative to when using H+ as the reactant ion. The proposed method is a rapid, sensitive, and environmentally economical approach that uses few reagents.
近年来,对挥发性 N-亚硝胺(NAs)的控制一直受到制药和食品行业的关注,因为其中许多化合物可能是人类致癌物质。因此,迫切需要快速、痕量的定量测定方法。在这项工作中,我们提出了常压铵加成电离质谱法,用于灵敏检测各种药剂顶层空间中的挥发性亚硝胺。电喷雾离子化产生的铵离子作为亚硝胺的反应离子,生成铵-亚硝胺加成离子,经过源内碰撞诱导解离生成质子化的亚硝胺,并通过质谱进行检测。该方法对各种挥发性NA的电离选择性和灵敏度均有显著提高,所有NA的定量限(LOQ)均低于52 ng L-1,从而提高了定量性能。以 NH4+ 作为反应离子时,不同的 NAs 几乎呈等摩尔反应,与以 H+ 作为反应离子时相比,单个化合物的强度至少提高了两倍。所提出的方法是一种快速、灵敏且环保经济的方法,只需使用少量试剂。
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.