Mechanisms of Lung Endothelial Cell Injury and Survival in Pulmonary Arterial Hypertension.

Ygor Marinho, Elizabeth S Villarreal, Omar Loya, Suellen D Oliveira
{"title":"Mechanisms of Lung Endothelial Cell Injury and Survival in Pulmonary Arterial Hypertension.","authors":"Ygor Marinho, Elizabeth S Villarreal, Omar Loya, Suellen D Oliveira","doi":"10.1152/ajplung.00208.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary arterial hypertension (PAH) is a progressive, chronic, and incurable inflammatory pulmonary vascular disease characterized by significant sex bias and largely unexplored microbial-associated molecular mechanisms that may influence its development and sex prevalence across various subgroups. PAH can be subclassified as idiopathic, heritable, or associated with conditions such as connective tissue diseases, congenital heart defects, liver disease, infections, and chronic exposure to drugs or toxins. During PAH progression, lung vascular endothelial cells (ECs) undergo dramatic morphofunctional transformations in response to acute and chronic inflammation. These transformations include the appearance and expansion of abnormal vascular cell phenotypes such as those derived from apoptosis-resistant cell growth and endothelial-to-mesenchymal transition (EndoMT). Compelling evidence indicates that these endothelial phenotypes seem to be triggered by chronic lung vascular injury and dysfunction, often characterized by reduced secretion of vasoactive molecules like nitric oxide (NO) and exacerbated response to vasoconstrictors such as Endothelin-1 (ET-1); both long-term known contributors of PAH pathogenesis. This review sheds light on the mechanisms of EC dysfunction, apoptosis, and EndoMT in PAH, aiming to unravel the intricate interactions between ECs, pathogens, and other cell types that drive the onset and progression of this devastating disease. Ultimately, we hope to provide an overview of the complex functions of lung vascular ECs in PAH, inspiring novel therapeutic strategies that target these dysfunctional cells to improve the treatment landscape for PAH, particularly in the face of current and emerging global pathogenic threats.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00208.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pulmonary arterial hypertension (PAH) is a progressive, chronic, and incurable inflammatory pulmonary vascular disease characterized by significant sex bias and largely unexplored microbial-associated molecular mechanisms that may influence its development and sex prevalence across various subgroups. PAH can be subclassified as idiopathic, heritable, or associated with conditions such as connective tissue diseases, congenital heart defects, liver disease, infections, and chronic exposure to drugs or toxins. During PAH progression, lung vascular endothelial cells (ECs) undergo dramatic morphofunctional transformations in response to acute and chronic inflammation. These transformations include the appearance and expansion of abnormal vascular cell phenotypes such as those derived from apoptosis-resistant cell growth and endothelial-to-mesenchymal transition (EndoMT). Compelling evidence indicates that these endothelial phenotypes seem to be triggered by chronic lung vascular injury and dysfunction, often characterized by reduced secretion of vasoactive molecules like nitric oxide (NO) and exacerbated response to vasoconstrictors such as Endothelin-1 (ET-1); both long-term known contributors of PAH pathogenesis. This review sheds light on the mechanisms of EC dysfunction, apoptosis, and EndoMT in PAH, aiming to unravel the intricate interactions between ECs, pathogens, and other cell types that drive the onset and progression of this devastating disease. Ultimately, we hope to provide an overview of the complex functions of lung vascular ECs in PAH, inspiring novel therapeutic strategies that target these dysfunctional cells to improve the treatment landscape for PAH, particularly in the face of current and emerging global pathogenic threats.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肺动脉高压的肺内皮细胞损伤和存活机制
肺动脉高压(PAH)是一种进行性、慢性和无法治愈的炎症性肺血管疾病,其特点是明显的性别差异和尚未探索的微生物相关分子机制,这些机制可能会影响其在不同亚组中的发展和性别流行率。PAH 可细分为特发性、遗传性或与结缔组织疾病、先天性心脏缺陷、肝脏疾病、感染、长期暴露于药物或毒素等相关的疾病。在 PAH 的发展过程中,肺血管内皮细胞(ECs)会因急性和慢性炎症而发生巨大的形态功能转变。这些转变包括异常血管细胞表型的出现和扩展,如细胞抗凋亡生长和内皮细胞向间质转化(EndoMT)。有令人信服的证据表明,这些内皮表型似乎是由慢性肺血管损伤和功能障碍引发的,其特征通常是一氧化氮(NO)等血管活性分子分泌减少,以及对内皮素-1(ET-1)等血管收缩剂的反应加剧;这两种因素都是 PAH 发病机制中长期存在的已知因素。这篇综述揭示了 PAH 中心血管细胞功能障碍、凋亡和内皮细胞生长因子的机制,旨在揭示心血管细胞、病原体和其他细胞类型之间错综复杂的相互作用,这种相互作用推动了这种毁灭性疾病的发生和发展。最终,我们希望概述 PAH 中肺部血管内皮细胞的复杂功能,启发针对这些功能障碍细胞的新型治疗策略,以改善 PAH 的治疗前景,尤其是面对当前和新出现的全球性致病威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
期刊最新文献
Disruption of immune responses by type 1 diabetes exacerbates SARS-CoV-2 mediated lung injury. Eosinophils prevent diet-induced airway hyperresponsiveness in mice on a high-fat diet. Expression of Semaphorin3E/PlexinD1 in human airway smooth muscle cells of patients with COPD. Identification of FGFR4 as a regulator of myofibroblast differentiation in pulmonary fibrosis. Inference of alveolar capillary network connectivity from blood flow dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1