Stefan J. Rietmann, Shenja Loderstedt, Kaspar Matiasek, Ingmar Kiefer, Vidhya Jagannathan, Tosso Leeb
{"title":"Intragenic duplication disrupting the reading frame of MFSD8 in Small Swiss Hounds with neuronal ceroid lipofuscinosis","authors":"Stefan J. Rietmann, Shenja Loderstedt, Kaspar Matiasek, Ingmar Kiefer, Vidhya Jagannathan, Tosso Leeb","doi":"10.1111/age.13485","DOIUrl":null,"url":null,"abstract":"<p>Neuronal ceroid lipofuscinosis (NCL) represents a heterogenous group of lysosomal storage diseases resulting in progressive neurodegeneration. We investigated two Small Swiss Hound littermates that showed progressive ataxia and loss of cognitive functions and vision starting around the age of 12 months. Both dogs had to be euthanized a few months after the onset of disease owing to the severity of their clinical signs. Pathological investigation of one affected dog revealed cerebral and cerebellar atrophy with cytoplasmic accumulation of autofluorescent material in degenerating neurons. The clinical signs in combination with the characteristic histopathology led to a tentative diagnosis of NCL. In the subsequent genetic investigation, the genome of one affected dog was sequenced. This revealed a duplication of 18 819 bp within the <i>MFSD8</i> gene. The duplication breakpoints were located in intron 3 and exon 12 of the gene and were predicted to disrupt the reading frame. Both affected dogs carried the duplication in a homozygous state and there was perfect cosegregation of the genotypes with the phenotype in a large pedigree, consistent with autosomal recessive inheritance. <i>MFSD8</i> loss-of-function variants are a known cause of NCL7 in human patients, dogs and other mammalian species. The existing knowledge on <i>MFSD8</i> together with the experimental data strongly suggests that the identified intragenic <i>MFSD8</i> duplication caused the disease in the Small Swiss Hounds. These results allow their diagnosis to be refined to NCL7 and enable genetic testing in the breed to avoid further unintentional carrier × carrier matings.</p>","PeriodicalId":7905,"journal":{"name":"Animal genetics","volume":"55 6","pages":"801-809"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/age.13485","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal genetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/age.13485","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Neuronal ceroid lipofuscinosis (NCL) represents a heterogenous group of lysosomal storage diseases resulting in progressive neurodegeneration. We investigated two Small Swiss Hound littermates that showed progressive ataxia and loss of cognitive functions and vision starting around the age of 12 months. Both dogs had to be euthanized a few months after the onset of disease owing to the severity of their clinical signs. Pathological investigation of one affected dog revealed cerebral and cerebellar atrophy with cytoplasmic accumulation of autofluorescent material in degenerating neurons. The clinical signs in combination with the characteristic histopathology led to a tentative diagnosis of NCL. In the subsequent genetic investigation, the genome of one affected dog was sequenced. This revealed a duplication of 18 819 bp within the MFSD8 gene. The duplication breakpoints were located in intron 3 and exon 12 of the gene and were predicted to disrupt the reading frame. Both affected dogs carried the duplication in a homozygous state and there was perfect cosegregation of the genotypes with the phenotype in a large pedigree, consistent with autosomal recessive inheritance. MFSD8 loss-of-function variants are a known cause of NCL7 in human patients, dogs and other mammalian species. The existing knowledge on MFSD8 together with the experimental data strongly suggests that the identified intragenic MFSD8 duplication caused the disease in the Small Swiss Hounds. These results allow their diagnosis to be refined to NCL7 and enable genetic testing in the breed to avoid further unintentional carrier × carrier matings.
期刊介绍:
Animal Genetics reports frontline research on immunogenetics, molecular genetics and functional genomics of economically important and domesticated animals. Publications include the study of variability at gene and protein levels, mapping of genes, traits and QTLs, associations between genes and traits, genetic diversity, and characterization of gene or protein expression and control related to phenotypic or genetic variation.
The journal publishes full-length articles, short communications and brief notes, as well as commissioned and submitted mini-reviews on issues of interest to Animal Genetics readers.