Phosphatidylserine-mediated uptake of extracellular vesicles by hepatocytes ameliorates liver ischemia-reperfusion injury.

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Apoptosis Pub Date : 2024-10-13 DOI:10.1007/s10495-024-02030-8
Rongrong Li, Chen Wang, Xiaoniao Chen, Enze Fu, Kaiyue Zhang, Hongyan Tao, Zhibo Han, Zhong-Chao Han, Zongjin Li
{"title":"Phosphatidylserine-mediated uptake of extracellular vesicles by hepatocytes ameliorates liver ischemia-reperfusion injury.","authors":"Rongrong Li, Chen Wang, Xiaoniao Chen, Enze Fu, Kaiyue Zhang, Hongyan Tao, Zhibo Han, Zhong-Chao Han, Zongjin Li","doi":"10.1007/s10495-024-02030-8","DOIUrl":null,"url":null,"abstract":"<p><p>Compelling evidence suggests that mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) promote regeneration in animal models of liver injury by delivering signaling molecules. However, their target cells and uptake mechanism remain elusive. In this study, MSC-EVs were intravenously administered in a mouse model of liver ischemia-reperfusion injury (IRI). Our results revealed that MSC-EVs exhibit enhanced liver targeting in IRI mice, and injured hepatocytes display a greater capacity for MSC-EV uptake. We found that phosphatidylserine (PS) displayed on the exterior of injured hepatocytes promotes MSC-EV internalization, possibly by binding to MFGE8, a protein expressed on the MSC-EV membrane. Furthermore, the therapeutic effect of MSC-EVs on liver IRI is highly dependent on this PS-mediated uptake pathway. Our findings provide evidence that MSC-EVs preferentially target injured hepatocytes, relying on a PS-dependent uptake route to exert hepatoprotective effects, which are critical for the future design of EV-based therapeutic strategies for liver IRI.</p>","PeriodicalId":8062,"journal":{"name":"Apoptosis","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apoptosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10495-024-02030-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Compelling evidence suggests that mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) promote regeneration in animal models of liver injury by delivering signaling molecules. However, their target cells and uptake mechanism remain elusive. In this study, MSC-EVs were intravenously administered in a mouse model of liver ischemia-reperfusion injury (IRI). Our results revealed that MSC-EVs exhibit enhanced liver targeting in IRI mice, and injured hepatocytes display a greater capacity for MSC-EV uptake. We found that phosphatidylserine (PS) displayed on the exterior of injured hepatocytes promotes MSC-EV internalization, possibly by binding to MFGE8, a protein expressed on the MSC-EV membrane. Furthermore, the therapeutic effect of MSC-EVs on liver IRI is highly dependent on this PS-mediated uptake pathway. Our findings provide evidence that MSC-EVs preferentially target injured hepatocytes, relying on a PS-dependent uptake route to exert hepatoprotective effects, which are critical for the future design of EV-based therapeutic strategies for liver IRI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磷脂酰丝氨酸介导的肝细胞吸收细胞外囊泡可改善肝脏缺血再灌注损伤。
令人信服的证据表明,间充质干细胞衍生的细胞外囊泡(MSC-EVs)通过传递信号分子促进肝损伤动物模型的再生。然而,它们的靶细胞和吸收机制仍然难以捉摸。本研究在肝脏缺血再灌注损伤(IRI)小鼠模型中静脉注射间充质干细胞-EV。我们的研究结果表明,间充质干细胞-EV在IRI小鼠肝脏靶向性增强,损伤肝细胞对间充质干细胞-EV的摄取能力更强。我们发现,损伤肝细胞外部的磷脂酰丝氨酸(PS)可促进间充质干细胞-EV的内化,这可能是通过与间充质干细胞-EV膜上表达的蛋白MFGE8结合实现的。此外,间充质干细胞-EV对肝脏IRI的治疗效果高度依赖于这种PS介导的吸收途径。我们的研究结果提供了证据,表明间充质干细胞-EV优先靶向损伤的肝细胞,依靠PS依赖性摄取途径发挥保肝作用,这对未来设计基于EV的肝脏IRI治疗策略至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Apoptosis
Apoptosis 生物-生化与分子生物学
CiteScore
9.10
自引率
4.20%
发文量
85
审稿时长
1 months
期刊介绍: Apoptosis, a monthly international peer-reviewed journal, focuses on the rapid publication of innovative investigations into programmed cell death. The journal aims to stimulate research on the mechanisms and role of apoptosis in various human diseases, such as cancer, autoimmune disease, viral infection, AIDS, cardiovascular disease, neurodegenerative disorders, osteoporosis, and aging. The Editor-In-Chief acknowledges the importance of advancing clinical therapies for apoptosis-related diseases. Apoptosis considers Original Articles, Reviews, Short Communications, Letters to the Editor, and Book Reviews for publication.
期刊最新文献
Combined effects of natural products and exercise on apoptosis pathways in obesity-related skeletal muscle dysfunction. Emerging role of PANoptosis in kidney diseases: molecular mechanisms and therapeutic opportunities. Exosomes derived from FN14-overexpressing BMSCs activate the NF-κB signaling pathway to induce PANoptosis in osteosarcoma. Mechanisms of apoptosis-related non-coding RNAs in ovarian cancer: a narrative review. Programmed cardiomyocyte death in myocardial infarction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1