Ghazaleh Talebi, Parvaneh Saffarian, Mojdeh Hakemi-Vala, Amir Sadeghi, Abbas Yadegar
{"title":"The effect of <i>Helicobacter pylori</i>-derived extracellular vesicles on glucose metabolism and induction of insulin resistance in HepG2 cells.","authors":"Ghazaleh Talebi, Parvaneh Saffarian, Mojdeh Hakemi-Vala, Amir Sadeghi, Abbas Yadegar","doi":"10.1080/13813455.2024.2418494","DOIUrl":null,"url":null,"abstract":"<p><p><i>Helicobacter pylori</i> infection has been associated with the development of insulin resistance (IR). This study aimed to examine the effect of <i>H. pylori</i>-derived extracellular vesicles (EVs) on IR induction. EVs were derived from two <i>H. pylori</i> strains, and characterised by transmission electron microscopy and dynamic light scattering. Different concentrations of insulin were added to HepG2 cells to induce IR model. HepG2 cells were exposed to various concentrations of <i>H. pylori</i>-derived EVs to assess IR development. The gene expression of <i>IRS1</i>, <i>AKT2</i>, <i>GLUT2</i>, <i>IL-6</i>, <i>SOCS3</i>, <i>c-Jun</i> and miR-140 was examined using RT-qPCR. Glucose uptake analysis revealed insulin at 5 × 10 <sup>-7 </sup>mol/l and EVs at 50 µg/ml induced IR model in HepG2 cells. <i>H. pylori</i>-derived EVs downregulated the expression level of <i>IRS1</i>, <i>AKT2</i>, and <i>GLUT2</i>, and upregulated <i>IL-6</i>, <i>SOCS3</i>, <i>c-Jun</i>, and miR-140 expression in HepG2 cells. In conclusion, our findings propose a novel mechanism by which <i>H. pylori-</i>derived EVs could potentially induce IR.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Physiology and Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13813455.2024.2418494","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Helicobacter pylori infection has been associated with the development of insulin resistance (IR). This study aimed to examine the effect of H. pylori-derived extracellular vesicles (EVs) on IR induction. EVs were derived from two H. pylori strains, and characterised by transmission electron microscopy and dynamic light scattering. Different concentrations of insulin were added to HepG2 cells to induce IR model. HepG2 cells were exposed to various concentrations of H. pylori-derived EVs to assess IR development. The gene expression of IRS1, AKT2, GLUT2, IL-6, SOCS3, c-Jun and miR-140 was examined using RT-qPCR. Glucose uptake analysis revealed insulin at 5 × 10 -7 mol/l and EVs at 50 µg/ml induced IR model in HepG2 cells. H. pylori-derived EVs downregulated the expression level of IRS1, AKT2, and GLUT2, and upregulated IL-6, SOCS3, c-Jun, and miR-140 expression in HepG2 cells. In conclusion, our findings propose a novel mechanism by which H. pylori-derived EVs could potentially induce IR.
期刊介绍:
Archives of Physiology and Biochemistry: The Journal of Metabolic Diseases is an international peer-reviewed journal which has been relaunched to meet the increasing demand for integrated publication on molecular, biochemical and cellular aspects of metabolic diseases, as well as clinical and therapeutic strategies for their treatment. It publishes full-length original articles, rapid papers, reviews and mini-reviews on selected topics. It is the overall goal of the journal to disseminate novel approaches to an improved understanding of major metabolic disorders.
The scope encompasses all topics related to the molecular and cellular pathophysiology of metabolic diseases like obesity, type 2 diabetes and the metabolic syndrome, and their associated complications.
Clinical studies are considered as an integral part of the Journal and should be related to one of the following topics:
-Dysregulation of hormone receptors and signal transduction
-Contribution of gene variants and gene regulatory processes
-Impairment of intermediary metabolism at the cellular level
-Secretion and metabolism of peptides and other factors that mediate cellular crosstalk
-Therapeutic strategies for managing metabolic diseases
Special issues dedicated to topics in the field will be published regularly.