Edgar Erdfelder, Julian Quevedo Pütter, Martin Schnuerch
{"title":"On aggregation invariance of multinomial processing tree models.","authors":"Edgar Erdfelder, Julian Quevedo Pütter, Martin Schnuerch","doi":"10.3758/s13428-024-02497-y","DOIUrl":null,"url":null,"abstract":"<p><p>Multinomial processing tree (MPT) models are prominent and frequently used tools to model and measure cognitive processes underlying responses in many experimental paradigms. Although MPT models typically refer to cognitive processes within single individuals, they have often been applied to group data aggregated across individuals. We investigate the conditions under which MPT analyses of aggregate data make sense. After introducing the notions of structural and empirical aggregation invariance of MPT models, we show that any MPT model that holds at the level of single individuals must also hold at the aggregate level when it is both structurally and empirically aggregation invariant. Moreover, group-level parameters of aggregation-invariant MPT models are equivalent to the expected values (i.e., means) of the corresponding individual parameters. To investigate the robustness of MPT results for aggregate data when one or both invariance conditions are violated, we additionally performed a series of simulation studies, systematically manipulating (1) the sample sizes in different trees of the model, (2) model parameterization, (3) means and variances of crucial model parameters, and (4) their correlations with other parameters of the respective MPT model. Overall, our results show that MPT parameter estimates based on aggregate data are trustworthy under rather general conditions, provided that a few preconditions are met.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525265/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02497-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Multinomial processing tree (MPT) models are prominent and frequently used tools to model and measure cognitive processes underlying responses in many experimental paradigms. Although MPT models typically refer to cognitive processes within single individuals, they have often been applied to group data aggregated across individuals. We investigate the conditions under which MPT analyses of aggregate data make sense. After introducing the notions of structural and empirical aggregation invariance of MPT models, we show that any MPT model that holds at the level of single individuals must also hold at the aggregate level when it is both structurally and empirically aggregation invariant. Moreover, group-level parameters of aggregation-invariant MPT models are equivalent to the expected values (i.e., means) of the corresponding individual parameters. To investigate the robustness of MPT results for aggregate data when one or both invariance conditions are violated, we additionally performed a series of simulation studies, systematically manipulating (1) the sample sizes in different trees of the model, (2) model parameterization, (3) means and variances of crucial model parameters, and (4) their correlations with other parameters of the respective MPT model. Overall, our results show that MPT parameter estimates based on aggregate data are trustworthy under rather general conditions, provided that a few preconditions are met.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.