Amelie Franke , Sophia Dahl , Monika Funck , Hans Bakker , Christoph Garbers , Juliane Lokau
{"title":"Interleukin-2 receptor α (IL-2Rα/CD25) shedding is differentially regulated by N- and O-glycosylation","authors":"Amelie Franke , Sophia Dahl , Monika Funck , Hans Bakker , Christoph Garbers , Juliane Lokau","doi":"10.1016/j.bbamcr.2024.119863","DOIUrl":null,"url":null,"abstract":"<div><div>The cytokine interleukin-2 (IL-2) is a critical regulator of immune responses, with an especially well-characterized role in regulating T-cell homeostasis. IL-2 signaling involves three distinct receptor subunits: the IL-2Rα (CD25), IL-2Rβ, and IL-2Rγ. The intracellular transduction of IL-2-induced signals is strictly dependent on IL-2Rβ and IL-2Rγ, while the IL-2Rα is not directly involved in signaling. Instead, it has the highest affinity towards IL-2 and is thus responsible for regulating the affinity of a cell for IL-2. In addition to the membrane-bound IL-2Rα, a soluble form of the receptor (sIL-2Rα) has been described, which is present in the blood of healthy individuals, increased under various pathological conditions, and able to bind IL-2 and thus modulate its function. The sIL-2Rα is generated by proteolytic cleavage of the membrane-bound receptor. Here, we analyze whether glycosylation of the IL-2Rα regulates its proteolysis. We find that constitutive IL-2Rα shedding is affected by glycosylation and discover distinct roles for N- and O-glycosylation. Furthermore, we show that induced shedding by the metalloproteases ADAM10 and ADAM17 is also differentially regulated by distinct types of glycans. Finally, we identify a specific role for an N-glycan at an exosite in ADAM17-mediated proteolysis that does not affect ADAM10, indicating distinct substrate recognition mechanisms. These results further the understanding of the mechanisms leading to sIL-2Rα generation, and thus offer the opportunity to specifically modulate the generation of the soluble receptor.</div></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1872 1","pages":"Article 119863"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488924002064","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The cytokine interleukin-2 (IL-2) is a critical regulator of immune responses, with an especially well-characterized role in regulating T-cell homeostasis. IL-2 signaling involves three distinct receptor subunits: the IL-2Rα (CD25), IL-2Rβ, and IL-2Rγ. The intracellular transduction of IL-2-induced signals is strictly dependent on IL-2Rβ and IL-2Rγ, while the IL-2Rα is not directly involved in signaling. Instead, it has the highest affinity towards IL-2 and is thus responsible for regulating the affinity of a cell for IL-2. In addition to the membrane-bound IL-2Rα, a soluble form of the receptor (sIL-2Rα) has been described, which is present in the blood of healthy individuals, increased under various pathological conditions, and able to bind IL-2 and thus modulate its function. The sIL-2Rα is generated by proteolytic cleavage of the membrane-bound receptor. Here, we analyze whether glycosylation of the IL-2Rα regulates its proteolysis. We find that constitutive IL-2Rα shedding is affected by glycosylation and discover distinct roles for N- and O-glycosylation. Furthermore, we show that induced shedding by the metalloproteases ADAM10 and ADAM17 is also differentially regulated by distinct types of glycans. Finally, we identify a specific role for an N-glycan at an exosite in ADAM17-mediated proteolysis that does not affect ADAM10, indicating distinct substrate recognition mechanisms. These results further the understanding of the mechanisms leading to sIL-2Rα generation, and thus offer the opportunity to specifically modulate the generation of the soluble receptor.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.