Xudong He , Jinye Shi , Lina Bu , Shuting Zhou , Kaixuan Wu , Gui Liang , Xiaotao Xu , Aizhong Wang
{"title":"Ursodeoxycholic acid alleviates fat embolism syndrome-induced acute lung injury by inhibiting the p38 MAPK/NF-κB signalling pathway through FXR","authors":"Xudong He , Jinye Shi , Lina Bu , Shuting Zhou , Kaixuan Wu , Gui Liang , Xiaotao Xu , Aizhong Wang","doi":"10.1016/j.bcp.2024.116574","DOIUrl":null,"url":null,"abstract":"<div><div>Acute lung injury (ALI) caused by fat embolism syndrome (FES) is a disease with high mortality. This study aimed to explore the roles of ursodeoxycholic acid (UDCA) in FES-induced ALI and its underlying mechanisms. An ALI mouse model was established by allografting mouse perinephric fat. For in vitro experiments, human pulmonary microvascular endothelial cells (HPMEC) were treated with FFAs. The effects of UDCA on the expression of farnesoid X receptor (FXR) and the inflammatory response in endothelial cells were investigated. UDCA significantly inhibited the inflammatory response and the expression of proinflammatory markers during FES-induced ALI. UDCA markedly decreased TNF-α and IL-1β expression in vitro. UDCA administration markedly upregulated FXR expression and significantly reduced the phosphorylation of p38 MAPK and NF-κB p65. Knock down FXR expression decreased the effect of UDCA in vivo. Furthermore, knock down FXR expression and overexpressing FXR increased and decreased the inflammatory response, respectively, in vitro. Moreover, administration of a p38 MAPK activator reversed the anti-inflammatory effect of FXR overexpression. UDCA ameliorated inflammation during FES-induced ALI by suppressing p38 MAPK/NF-κB signalling and activating FXR. These findings provide new evidence for the potential of UDCA for FES-induced ALI treatment.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"230 ","pages":"Article 116574"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295224005744","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute lung injury (ALI) caused by fat embolism syndrome (FES) is a disease with high mortality. This study aimed to explore the roles of ursodeoxycholic acid (UDCA) in FES-induced ALI and its underlying mechanisms. An ALI mouse model was established by allografting mouse perinephric fat. For in vitro experiments, human pulmonary microvascular endothelial cells (HPMEC) were treated with FFAs. The effects of UDCA on the expression of farnesoid X receptor (FXR) and the inflammatory response in endothelial cells were investigated. UDCA significantly inhibited the inflammatory response and the expression of proinflammatory markers during FES-induced ALI. UDCA markedly decreased TNF-α and IL-1β expression in vitro. UDCA administration markedly upregulated FXR expression and significantly reduced the phosphorylation of p38 MAPK and NF-κB p65. Knock down FXR expression decreased the effect of UDCA in vivo. Furthermore, knock down FXR expression and overexpressing FXR increased and decreased the inflammatory response, respectively, in vitro. Moreover, administration of a p38 MAPK activator reversed the anti-inflammatory effect of FXR overexpression. UDCA ameliorated inflammation during FES-induced ALI by suppressing p38 MAPK/NF-κB signalling and activating FXR. These findings provide new evidence for the potential of UDCA for FES-induced ALI treatment.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.