{"title":"A data mining approach to identify key radioresponsive genes in mouse model of radiation-induced intestinal injury.","authors":"Suchitra Sharma, Aliza Rehan, Ajaswrata Dutta","doi":"10.1080/1354750X.2024.2420196","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Radiation-mediated GI injury (RIGI) is observed in humans either due to accidental or intentional exposures. This can only be managed with supporting care and no approved countermeasures are available till now. Early detection and monitoring of RIGI is important for effective medical management and improve survival chances of exposed individuals.</p><p><strong>Objective: </strong>The present study aims to identify new signatures of RIGI using data mining approach followed by validation of selected hub genes in mice.</p><p><strong>Methods: </strong>Data mining study was performed using microarray datasets from Gene Expression Omnibus database. The differentially expressed genes were identified and further validated in total-body irradiated mice.</p><p><strong>Results: </strong>Based on KEGG pathway analysis, lipid metabolism was found as one of the predominant pathways altered in irradiated intestine. Extensive alteration in lipid profile and lipid modification was observed in this tissue. A protein-protein interaction network revealed top 08 hub genes related to lipid metabolism, namely Fabp1, Fabp2, Fabp6, Npc1l1, Ppar-α, Abcg8, Hnf-4α, and Insig1. qRT-PCR analysis revealed significant up-regulation of Fabp6 and Hnf-4α and down-regulation of Fabp1, Fabp2 and Insig1 transcripts in irradiated intestine. Radiation dose and time kinetics study revealed that the selected 05 genes were altered differentially in response to radiation in intestine.</p><p><strong>Conclusion: </strong>Finding suggests that lipid metabolism is one of the key targets of radiation and its mediators may act as biomarkers in detection and progression of RIGI.</p>","PeriodicalId":8921,"journal":{"name":"Biomarkers","volume":" ","pages":"505-517"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarkers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1354750X.2024.2420196","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Radiation-mediated GI injury (RIGI) is observed in humans either due to accidental or intentional exposures. This can only be managed with supporting care and no approved countermeasures are available till now. Early detection and monitoring of RIGI is important for effective medical management and improve survival chances of exposed individuals.
Objective: The present study aims to identify new signatures of RIGI using data mining approach followed by validation of selected hub genes in mice.
Methods: Data mining study was performed using microarray datasets from Gene Expression Omnibus database. The differentially expressed genes were identified and further validated in total-body irradiated mice.
Results: Based on KEGG pathway analysis, lipid metabolism was found as one of the predominant pathways altered in irradiated intestine. Extensive alteration in lipid profile and lipid modification was observed in this tissue. A protein-protein interaction network revealed top 08 hub genes related to lipid metabolism, namely Fabp1, Fabp2, Fabp6, Npc1l1, Ppar-α, Abcg8, Hnf-4α, and Insig1. qRT-PCR analysis revealed significant up-regulation of Fabp6 and Hnf-4α and down-regulation of Fabp1, Fabp2 and Insig1 transcripts in irradiated intestine. Radiation dose and time kinetics study revealed that the selected 05 genes were altered differentially in response to radiation in intestine.
Conclusion: Finding suggests that lipid metabolism is one of the key targets of radiation and its mediators may act as biomarkers in detection and progression of RIGI.
期刊介绍:
The journal Biomarkers brings together all aspects of the rapidly growing field of biomarker research, encompassing their various uses and applications in one essential source.
Biomarkers provides a vital forum for the exchange of ideas and concepts in all areas of biomarker research. High quality papers in four main areas are accepted and manuscripts describing novel biomarkers and their subsequent validation are especially encouraged:
• Biomarkers of disease
• Biomarkers of exposure
• Biomarkers of response
• Biomarkers of susceptibility
Manuscripts can describe biomarkers measured in humans or other animals in vivo or in vitro. Biomarkers will consider publishing negative data from studies of biomarkers of susceptibility in human populations.