High Frequency MHz-Order Vibration Enables Cell Membrane Remodelling and Lipid Microdomain Manipulation.

IF 3.2 3区 生物学 Q2 BIOPHYSICS Biophysical journal Pub Date : 2024-10-15 DOI:10.1016/j.bpj.2024.10.007
Lizebona A Ambattu, Blanca Del Rosal, Charlotte E Conn, Leslie Y Yeo
{"title":"High Frequency MHz-Order Vibration Enables Cell Membrane Remodelling and Lipid Microdomain Manipulation.","authors":"Lizebona A Ambattu, Blanca Del Rosal, Charlotte E Conn, Leslie Y Yeo","doi":"10.1016/j.bpj.2024.10.007","DOIUrl":null,"url":null,"abstract":"<p><p>We elucidate the mechanism underpinning a recently discovered phenomenon in which cells respond to MHz-order mechanostimuli. Deformations induced along the plasma membrane under these external mechanical cues are observed to decrease the membrane tension, which, in turn, drives transient and reversible remodelling of its lipid structure. In particular, the increase and consequent coalescence of ordered lipid microdomains leads to closer proximity to mechanosensitive ion channels-Piezo1, in particular-that due to crowding, results in their activation to mobilise influx of calcium (Ca<sup>2+</sup>) ions into the cell. It is such modulation of this second messenger that is responsible for the downstream signalling and cell fates that ensue. Additionally, we show that such spatiotemporal control over the membrane microdomains in cells-without necessitating biochemical factors-facilitates aggregation and association of intrinsically-disordered tau proteins in neuroblastoma cells, and their transformation to pathological conditions implicated in neurodegenerative diseases, thereby paving the way for the development of therapeutic intervention strategies.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.10.007","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We elucidate the mechanism underpinning a recently discovered phenomenon in which cells respond to MHz-order mechanostimuli. Deformations induced along the plasma membrane under these external mechanical cues are observed to decrease the membrane tension, which, in turn, drives transient and reversible remodelling of its lipid structure. In particular, the increase and consequent coalescence of ordered lipid microdomains leads to closer proximity to mechanosensitive ion channels-Piezo1, in particular-that due to crowding, results in their activation to mobilise influx of calcium (Ca2+) ions into the cell. It is such modulation of this second messenger that is responsible for the downstream signalling and cell fates that ensue. Additionally, we show that such spatiotemporal control over the membrane microdomains in cells-without necessitating biochemical factors-facilitates aggregation and association of intrinsically-disordered tau proteins in neuroblastoma cells, and their transformation to pathological conditions implicated in neurodegenerative diseases, thereby paving the way for the development of therapeutic intervention strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高频兆赫振动可实现细胞膜重塑和脂质微域操作
我们阐明了最近发现的细胞对兆赫级机械刺激做出反应的现象的基本机制。我们观察到,在这些外部机械刺激下,沿着质膜诱发的形变会降低膜张力,进而推动其脂质结构发生瞬时和可逆的重塑。特别是,有序脂质微域的增加和随之而来的凝聚会导致更接近机械敏感性离子通道(尤其是 Diezo1),由于拥挤,它们会被激活,从而调动钙离子(Ca2+)流入细胞。正是这种对第二信使的调节导致了下游信号的产生和随之而来的细胞命运。此外,我们还展示了这种对细胞膜微域的时空控制--无需生化因素--促进了神经母细胞瘤细胞中内在紊乱的 tau 蛋白的聚集和结合,以及它们向与神经退行性疾病有关的病理状态的转变,从而为制定治疗干预策略铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
期刊最新文献
Laplace Approximation of J-factors for rigid base and rigid base pair models of DNA cyclization. Interacting myosin head dynamics and their modification by 2'-deoxy-ADP. A conserved H-bond network in human aquaporin-1 is necessary for native folding and oligomerization. A computational model for lipid-anchored polysaccharide export by the outer membrane protein GfcD. Estimation of vibrational spectra of Trp-cage protein from nonequilibrium metadynamics simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1