{"title":"CXC chemokine receptor 4 - mediated immune modulation and tumor microenvironment heterogeneity in gastric cancer: Utilizing multi-omics approaches to identify potential therapeutic targets.","authors":"Jing Tang, Wei Wei, Yaoqing Xu, Kexin Chen, Yaping Miao, Weining Fan, Zhi Huang, Jie Liu, Ping Chen, Honghao Luo, Lexin Wang","doi":"10.1002/biof.2130","DOIUrl":null,"url":null,"abstract":"<p><p>G-protein-coupled receptors (GPRs) are critical regulators of various biological behaviors, and their role in gastric cancer (GC) progression is gaining increasing attention. Among them, the immune regulatory mechanisms mediated by chemokine receptor 4 (CXCR4) remain insufficiently understood. This study aims to explore the immune regulatory functions of CXCR4 and the heterogeneity of the tumor microenvironment (TME) by examining GPR-related gene expression in GC. Through multi-omics approaches, including spatial transcriptomics and single-cell RNA sequencing, we investigated the oncogenic mechanisms of CXCR4, particularly its role in T cell immune exhaustion. In vitro experiments, including ELISA, PCR, CCK8 assays, cell scratch assays, and colony formation assays, were used to validate the role of CXCR4 in the migration and invasion of AGS and SNU-1 cell lines. CXCR4 silencing using siRNA further demonstrated its regulatory effects on these cellular processes. Our results revealed a strong correlation between elevated CXCR4 expression and increased exhaustion of regulatory T cells (Tregs) in the TME. Furthermore, heightened CXCR4 expression was linked to increased TME heterogeneity, driven by oxidative stress and activation of the NF-κB pathway, promoting immune evasion and tumor progression. Silencing CXCR4 significantly inhibited the invasive and proliferative abilities of AGS and SNU-1 cells, while also reducing the expression of pro-inflammatory cytokines IL-1β and interleukin-6, thus alleviating chronic inflammation and improving TME conditions. In conclusion, our comprehensive investigation highlights CXCR4 as a key mediator of TME dynamics and immune modulation in GC. Targeting CXCR4 presents a promising therapeutic strategy to slow tumor progression by reducing Tregs-mediated immune exhaustion and TME heterogeneity, positioning it as a novel therapeutic target in GC treatment.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/biof.2130","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
G-protein-coupled receptors (GPRs) are critical regulators of various biological behaviors, and their role in gastric cancer (GC) progression is gaining increasing attention. Among them, the immune regulatory mechanisms mediated by chemokine receptor 4 (CXCR4) remain insufficiently understood. This study aims to explore the immune regulatory functions of CXCR4 and the heterogeneity of the tumor microenvironment (TME) by examining GPR-related gene expression in GC. Through multi-omics approaches, including spatial transcriptomics and single-cell RNA sequencing, we investigated the oncogenic mechanisms of CXCR4, particularly its role in T cell immune exhaustion. In vitro experiments, including ELISA, PCR, CCK8 assays, cell scratch assays, and colony formation assays, were used to validate the role of CXCR4 in the migration and invasion of AGS and SNU-1 cell lines. CXCR4 silencing using siRNA further demonstrated its regulatory effects on these cellular processes. Our results revealed a strong correlation between elevated CXCR4 expression and increased exhaustion of regulatory T cells (Tregs) in the TME. Furthermore, heightened CXCR4 expression was linked to increased TME heterogeneity, driven by oxidative stress and activation of the NF-κB pathway, promoting immune evasion and tumor progression. Silencing CXCR4 significantly inhibited the invasive and proliferative abilities of AGS and SNU-1 cells, while also reducing the expression of pro-inflammatory cytokines IL-1β and interleukin-6, thus alleviating chronic inflammation and improving TME conditions. In conclusion, our comprehensive investigation highlights CXCR4 as a key mediator of TME dynamics and immune modulation in GC. Targeting CXCR4 presents a promising therapeutic strategy to slow tumor progression by reducing Tregs-mediated immune exhaustion and TME heterogeneity, positioning it as a novel therapeutic target in GC treatment.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.