{"title":"Temporal generative models for learning heterogeneous group dynamics of ecological momentary assessment data.","authors":"Soohyun Kim, Young-Geun Kim, Yuanjia Wang","doi":"10.1093/biomtc/ujae115","DOIUrl":null,"url":null,"abstract":"<p><p>One of the goals of precision psychiatry is to characterize mental disorders in an individualized manner, taking into account the underlying dynamic processes. Recent advances in mobile technologies have enabled the collection of ecological momentary assessments that capture multiple responses in real-time at high frequency. However, ecological momentary assessment data are often multi-dimensional, correlated, and hierarchical. Mixed-effect models are commonly used but may require restrictive assumptions about the fixed and random effects and the correlation structure. The recurrent temporal restricted Boltzmann machine (RTRBM) is a generative neural network that can be used to model temporal data, but most existing RTRBM approaches do not account for the potential heterogeneity of group dynamics within a population based on available covariates. In this paper, we propose a new temporal generative model, the HDRBM, to learn the heterogeneous group dynamics and demonstrate the effectiveness of this approach on simulated and real-world ecological momentary assessment datasets. We show that by incorporating covariates, HDRBM can improve accuracy and interpretability, explore the underlying drivers of the group dynamics of participants, and serve as a generative model for ecological momentary assessment studies.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472390/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae115","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
One of the goals of precision psychiatry is to characterize mental disorders in an individualized manner, taking into account the underlying dynamic processes. Recent advances in mobile technologies have enabled the collection of ecological momentary assessments that capture multiple responses in real-time at high frequency. However, ecological momentary assessment data are often multi-dimensional, correlated, and hierarchical. Mixed-effect models are commonly used but may require restrictive assumptions about the fixed and random effects and the correlation structure. The recurrent temporal restricted Boltzmann machine (RTRBM) is a generative neural network that can be used to model temporal data, but most existing RTRBM approaches do not account for the potential heterogeneity of group dynamics within a population based on available covariates. In this paper, we propose a new temporal generative model, the HDRBM, to learn the heterogeneous group dynamics and demonstrate the effectiveness of this approach on simulated and real-world ecological momentary assessment datasets. We show that by incorporating covariates, HDRBM can improve accuracy and interpretability, explore the underlying drivers of the group dynamics of participants, and serve as a generative model for ecological momentary assessment studies.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.