{"title":"The effect of clozapine on immune-related biomarkers in schizophrenia patients","authors":"","doi":"10.1016/j.brainresbull.2024.111104","DOIUrl":null,"url":null,"abstract":"<div><div>Globally, schizophrenia is one of the main causes of disability. Approximately 1 % of the general population suffers from schizophrenia, and 30 % of cases are unresponsive to therapy. Clozapine is the gold standard for therapy-resistant schizophrenia (TRS), yet it has limited effectiveness and serious adverse events in some patients. Because of the possibility of severe neutropenia, clozapine administration requires monthly hematological monitoring in the first four months. Previous investigations have demonstrated the immune system alteration after clozapine treatment in schizophrenia patients. Besides, it has been proposed that clozapine changes the cytokines profile in schizophrenia patients. These findings highlighted the need to learn more about the disease's etiology and investigate the relationship between peripheral immune system markers and clozapine response to support strategies for better treatment outcomes. The time decision-making to start clozapine could be significantly decreased if some biomarkers were developed to assist physicians in anticipating whether a particular patient will respond to the medication. Therefore, this study aimed to comprehensively review the effect of clozapine on immune-related biomarkers in schizophrenia patients.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923024002387","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Globally, schizophrenia is one of the main causes of disability. Approximately 1 % of the general population suffers from schizophrenia, and 30 % of cases are unresponsive to therapy. Clozapine is the gold standard for therapy-resistant schizophrenia (TRS), yet it has limited effectiveness and serious adverse events in some patients. Because of the possibility of severe neutropenia, clozapine administration requires monthly hematological monitoring in the first four months. Previous investigations have demonstrated the immune system alteration after clozapine treatment in schizophrenia patients. Besides, it has been proposed that clozapine changes the cytokines profile in schizophrenia patients. These findings highlighted the need to learn more about the disease's etiology and investigate the relationship between peripheral immune system markers and clozapine response to support strategies for better treatment outcomes. The time decision-making to start clozapine could be significantly decreased if some biomarkers were developed to assist physicians in anticipating whether a particular patient will respond to the medication. Therefore, this study aimed to comprehensively review the effect of clozapine on immune-related biomarkers in schizophrenia patients.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.