The eIF3a translational control axis in the Wnt/β-catenin signaling pathway and colon tumorigenesis

IF 9.1 1区 医学 Q1 ONCOLOGY Cancer letters Pub Date : 2024-10-15 DOI:10.1016/j.canlet.2024.217303
Zizheng Dong, Anuj Ojha, Lincoln Barlow, Liyun Luo, Jing-Yuan Liu, Jian-Ting Zhang
{"title":"The eIF3a translational control axis in the Wnt/β-catenin signaling pathway and colon tumorigenesis","authors":"Zizheng Dong,&nbsp;Anuj Ojha,&nbsp;Lincoln Barlow,&nbsp;Liyun Luo,&nbsp;Jing-Yuan Liu,&nbsp;Jian-Ting Zhang","doi":"10.1016/j.canlet.2024.217303","DOIUrl":null,"url":null,"abstract":"<div><div>Translational initiation in protein synthesis is an important regulatory step in gene expression and its dysregulation may result in diseases such as cancer. Translational control by eIF4E/4<em>E</em>-BP has been well studied and contributes to mTOR signaling in various biological processes. Here, we report a novel translational control axis in the Wnt/β-catenin signaling pathway in colon tumorigenesis by eIF3a, a Yin-Yang factor in tumorigenesis and prognosis. We show that eIF3a expression is upregulated in human colon cancer tissues, pre-cancerous adenoma polyps, and associates with β-catenin level and APC mutation in human samples, and that eIF3a overexpression transforms intestinal epithelial cells. We also show that eIF3a expression is regulated by the Wnt/β-catenin signaling pathway with an active TCF/LEF binding site in its promoter and that eIF3a knockdown inhibits APC mutation-induced spontaneous colon tumorigenesis in APC<sup>min/+</sup> mice. Together, we conclude that eIF3a upregulation in colon cancer is due to APC mutation and it participates in colon tumorigenesis by adding a translational control axis in the Wnt/β-catenin signaling pathway and that it can serve as a potential target for colon cancer intervention.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"605 ","pages":"Article 217303"},"PeriodicalIF":9.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383524006980","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Translational initiation in protein synthesis is an important regulatory step in gene expression and its dysregulation may result in diseases such as cancer. Translational control by eIF4E/4E-BP has been well studied and contributes to mTOR signaling in various biological processes. Here, we report a novel translational control axis in the Wnt/β-catenin signaling pathway in colon tumorigenesis by eIF3a, a Yin-Yang factor in tumorigenesis and prognosis. We show that eIF3a expression is upregulated in human colon cancer tissues, pre-cancerous adenoma polyps, and associates with β-catenin level and APC mutation in human samples, and that eIF3a overexpression transforms intestinal epithelial cells. We also show that eIF3a expression is regulated by the Wnt/β-catenin signaling pathway with an active TCF/LEF binding site in its promoter and that eIF3a knockdown inhibits APC mutation-induced spontaneous colon tumorigenesis in APCmin/+ mice. Together, we conclude that eIF3a upregulation in colon cancer is due to APC mutation and it participates in colon tumorigenesis by adding a translational control axis in the Wnt/β-catenin signaling pathway and that it can serve as a potential target for colon cancer intervention.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wnt/β-catenin信号通路中的eIF3a翻译控制轴与结肠肿瘤发生。
蛋白质合成中的转化起始是基因表达的重要调控步骤,其失调可能导致癌症等疾病。eIF4E/4E-BP 的翻译控制已被深入研究,并在各种生物过程中对 mTOR 信号转导做出了贡献。在这里,我们报告了结肠肿瘤发生过程中 Wnt/β-catenin 信号通路中一个新的转译控制轴,即肿瘤发生和预后的阴阳因子 eIF3a。我们发现,eIF3a在人类结肠癌组织、癌前腺瘤息肉中表达上调,并与人类样本中的β-catenin水平和APC突变相关,eIF3a的过表达可转化肠上皮细胞。我们还发现,eIF3a的表达受Wnt/β-catenin信号通路调控,其启动子中有一个活跃的TCF/LEF结合位点,敲除eIF3a可抑制APC突变诱导的APCmin/+小鼠自发性结肠肿瘤发生。综上所述,我们得出结论:eIF3a在结肠癌中的上调是由于APC突变引起的,它通过在Wnt/β-catenin信号通路中增加一个翻译控制轴参与结肠癌的发生,可以作为结肠癌干预的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer letters
Cancer letters 医学-肿瘤学
CiteScore
17.70
自引率
2.10%
发文量
427
审稿时长
15 days
期刊介绍: Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research. Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy. By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.
期刊最新文献
Corrigendum to "SERPINE2/PN-1 regulates the DNA damage response and radioresistance by activating ATM in lung cancer" [Cancer Lett. 524 (2022) 268-283]. Frontiers in pancreatic cancer on biomarkers, microenvironment, and immunotherapy. TFAP2C-DDR1 axis regulates resistance to CDK4/6 inhibitor in breast cancer. HSP90 inhibitor AUY922 suppresses tumor growth and modulates immune response through YAP1-TEAD pathway inhibition in gastric cancer. Chemoresistance-motility signature of molecular evolution to chemotherapy in non-muscle-invasive bladder cancer and its clinical implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1