Design principles, growth laws, and competition of minimal autocatalysts

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Communications Chemistry Pub Date : 2024-10-21 DOI:10.1038/s42004-024-01250-y
Yann Sakref, Olivier Rivoire
{"title":"Design principles, growth laws, and competition of minimal autocatalysts","authors":"Yann Sakref, Olivier Rivoire","doi":"10.1038/s42004-024-01250-y","DOIUrl":null,"url":null,"abstract":"The difficulty of designing simple autocatalysts that grow exponentially in the absence of enzymes, external drives or ingenious internal mechanisms severely constrains scenarios for the emergence of evolution by natural selection in chemical and physical systems. Here, we systematically analyze these difficulties in the simplest and most generic autocatalyst: a dimeric molecule that duplicates by templated ligation. We show that despite its simplicity, such an autocatalyst can achieve exponential growth autonomously. We also show, however, that it is possible to design as simple sub-exponential autocatalysts that have an advantage over exponential autocatalysts when competing for a common resource. We reach these conclusions by developing a theoretical framework based on kinetic barrier diagrams. Besides challenging commonly accepted assumptions in the field of the origin of life, our results provide a blueprint for the experimental realization of elementary autocatalysts exhibiting a form of natural selection, whether on a molecular or colloidal scale. Autocatalysis plays an important role in the origin of life and molecular evolution, however, designing simple autocatalysts that grow exponentially remains challenging. Here, the authors computationally design simple autocatalysts-- dimeric molecules that duplicate by templated ligation, --and show that these autocatalysts can achieve exponential growth autonomously.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-10"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494078/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01250-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The difficulty of designing simple autocatalysts that grow exponentially in the absence of enzymes, external drives or ingenious internal mechanisms severely constrains scenarios for the emergence of evolution by natural selection in chemical and physical systems. Here, we systematically analyze these difficulties in the simplest and most generic autocatalyst: a dimeric molecule that duplicates by templated ligation. We show that despite its simplicity, such an autocatalyst can achieve exponential growth autonomously. We also show, however, that it is possible to design as simple sub-exponential autocatalysts that have an advantage over exponential autocatalysts when competing for a common resource. We reach these conclusions by developing a theoretical framework based on kinetic barrier diagrams. Besides challenging commonly accepted assumptions in the field of the origin of life, our results provide a blueprint for the experimental realization of elementary autocatalysts exhibiting a form of natural selection, whether on a molecular or colloidal scale. Autocatalysis plays an important role in the origin of life and molecular evolution, however, designing simple autocatalysts that grow exponentially remains challenging. Here, the authors computationally design simple autocatalysts-- dimeric molecules that duplicate by templated ligation, --and show that these autocatalysts can achieve exponential growth autonomously.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最小自催化剂的设计原理、生长规律和竞争。
在没有酶、外部驱动力或巧妙的内部机制的情况下,要设计出指数级增长的简单自催化剂非常困难,这严重制约了在化学和物理系统中出现自然选择进化的设想。在这里,我们系统地分析了最简单、最通用的自催化剂所面临的这些困难:一种通过模板连接复制的二聚分子。我们的研究表明,尽管这种自催化剂很简单,但它可以实现指数级的自主增长。不过,我们也证明,有可能设计出比指数型自催化剂更简单的亚指数型自催化剂,它们在竞争共同资源时比指数型自催化剂更有优势。我们通过开发基于动力学势垒图的理论框架得出上述结论。除了对生命起源领域普遍接受的假设提出挑战之外,我们的研究结果还为在分子或胶体尺度上实现表现出自然选择形式的基本自催化剂提供了实验蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
期刊最新文献
Enabling systemic identification and functionality profiling for Cdc42 homeostatic modulators. Shortcut to chemically accurate quantum computing via density-based basis-set correction A biomimetic phosphor that can build a rigid microenvironment for its long-lived afterglow in aqueous medium Leveraging infrared spectroscopy for automated structure elucidation Immiscible metamorphic water and methane fluids preserved in carbonated eclogite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1