Katherine M Murphy, Anna L Casto, Leonardo Chavez, Leonardo W Lima, Alejandra Quiñones, Malia A Gehan, Cory D Hirsch
{"title":"Maize Abiotic Stress Treatments in Controlled Environments.","authors":"Katherine M Murphy, Anna L Casto, Leonardo Chavez, Leonardo W Lima, Alejandra Quiñones, Malia A Gehan, Cory D Hirsch","doi":"10.1101/pdb.prot108620","DOIUrl":null,"url":null,"abstract":"<p><p>Maize (<i>Zea mays</i>) is one of the world's most important crops, providing food for humans and livestock and serving as a bioenergy source. Climate change and the resulting abiotic stressors in the field reduce crop yields, threatening food security and the global economy. Water deficit (i.e., drought), heat, and insufficient nutrients (e.g., nitrogen and phosphorus) are major environmental stressors that affect maize yields, and impact growth and development at all stages of the plant life cycle. Understanding the biological processes underlying these responses in maize has the potential to increase yields in the face of abiotic stress. Optimizing individual or combined abiotic stress treatments in controlled environments reduces potential noise in data collection that can be present under less controlled growth conditions. Here, we describe methods and conditions for controlled abiotic stress treatments and associated controls during early vegetative growth of maize, conducted in greenhouses or growth chambers. This includes the environmental conditions, equipment, soil preparation, and intensity and duration of heat, drought, nitrogen deficiency, and phosphorous deficiency. Controlled experiments at early growth stages are informative for future in-field studies that require greater labor and inputs, saving researchers time and growing space, and thus research funds, before testing plants across later stages of development. We suggest that stress treatments be severe enough to result in a measurable phenotype, but not so severe that all plants die prior to sample collection. This protocol is designed to set important standards for replicable research in maize.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.prot108620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Maize (Zea mays) is one of the world's most important crops, providing food for humans and livestock and serving as a bioenergy source. Climate change and the resulting abiotic stressors in the field reduce crop yields, threatening food security and the global economy. Water deficit (i.e., drought), heat, and insufficient nutrients (e.g., nitrogen and phosphorus) are major environmental stressors that affect maize yields, and impact growth and development at all stages of the plant life cycle. Understanding the biological processes underlying these responses in maize has the potential to increase yields in the face of abiotic stress. Optimizing individual or combined abiotic stress treatments in controlled environments reduces potential noise in data collection that can be present under less controlled growth conditions. Here, we describe methods and conditions for controlled abiotic stress treatments and associated controls during early vegetative growth of maize, conducted in greenhouses or growth chambers. This includes the environmental conditions, equipment, soil preparation, and intensity and duration of heat, drought, nitrogen deficiency, and phosphorous deficiency. Controlled experiments at early growth stages are informative for future in-field studies that require greater labor and inputs, saving researchers time and growing space, and thus research funds, before testing plants across later stages of development. We suggest that stress treatments be severe enough to result in a measurable phenotype, but not so severe that all plants die prior to sample collection. This protocol is designed to set important standards for replicable research in maize.
Cold Spring Harbor protocolsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍:
Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.