Is metadata of articles about COVID-19 enough for multilabel topic classification task?

IF 3.4 4区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Database: The Journal of Biological Databases and Curation Pub Date : 2024-10-21 DOI:10.1093/database/baae106
Shuo Xu, Yuefu Zhang, Liang Chen, Xin An
{"title":"Is metadata of articles about COVID-19 enough for multilabel topic classification task?","authors":"Shuo Xu, Yuefu Zhang, Liang Chen, Xin An","doi":"10.1093/database/baae106","DOIUrl":null,"url":null,"abstract":"<p><p>The ever-increasing volume of COVID-19-related articles presents a significant challenge for the manual curation and multilabel topic classification of LitCovid. For this purpose, a novel multilabel topic classification framework is developed in this study, which considers both the correlation and imbalance of topic labels, while empowering the pretrained model. With the help of this framework, this study devotes to answering the following question: Do full texts, MeSH (Medical Subject Heading), and biological entities of articles about COVID-19 encode more discriminative information than metadata (title, abstract, keyword, and journal name)? From extensive experiments on our enriched version of the BC7-LitCovid corpus and Hallmarks of Cancer corpus, the following conclusions can be drawn. Our framework demonstrates superior performance and robustness. The metadata of scientific publications about COVID-19 carries valuable information for multilabel topic classification. Compared to biological entities, full texts and MeSH can further enhance the performance of our framework for multilabel topic classification, but the improved performance is very limited. Database URL: https://github.com/pzczxs/Enriched-BC7-LitCovid.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492800/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baae106","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The ever-increasing volume of COVID-19-related articles presents a significant challenge for the manual curation and multilabel topic classification of LitCovid. For this purpose, a novel multilabel topic classification framework is developed in this study, which considers both the correlation and imbalance of topic labels, while empowering the pretrained model. With the help of this framework, this study devotes to answering the following question: Do full texts, MeSH (Medical Subject Heading), and biological entities of articles about COVID-19 encode more discriminative information than metadata (title, abstract, keyword, and journal name)? From extensive experiments on our enriched version of the BC7-LitCovid corpus and Hallmarks of Cancer corpus, the following conclusions can be drawn. Our framework demonstrates superior performance and robustness. The metadata of scientific publications about COVID-19 carries valuable information for multilabel topic classification. Compared to biological entities, full texts and MeSH can further enhance the performance of our framework for multilabel topic classification, but the improved performance is very limited. Database URL: https://github.com/pzczxs/Enriched-BC7-LitCovid.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于 COVID-19 的文章元数据是否足以完成多标签主题分类任务?
与 COVID-19 相关的文章数量不断增加,这给 LitCovid 的人工编辑和多标签主题分类带来了巨大挑战。为此,本研究开发了一个新颖的多标签主题分类框架,该框架考虑了主题标签的相关性和不平衡性,同时增强了预训练模型的能力。在该框架的帮助下,本研究致力于回答以下问题:与元数据(标题、摘要、关键词和期刊名)相比,COVID-19 相关文章的全文、MeSH(医学主题词表)和生物实体是否编码了更多的判别信息?通过对我们的 BC7-LitCovid 语料库和 "癌症标志 "语料库的丰富版本进行大量实验,可以得出以下结论。我们的框架具有卓越的性能和鲁棒性。有关 COVID-19 的科学出版物的元数据为多标签主题分类提供了有价值的信息。与生物实体相比,全文和 MeSH 可以进一步提高我们的多标签主题分类框架的性能,但提高的性能非常有限。数据库网址:https://github.com/pzczxs/Enriched-BC7-LitCovid.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Database: The Journal of Biological Databases and Curation
Database: The Journal of Biological Databases and Curation MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
9.00
自引率
3.40%
发文量
100
审稿时长
>12 weeks
期刊介绍: Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data. Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.
期刊最新文献
athisomiRDB: A comprehensive database of Arabidopsis isomiRs. Peptipedia v2.0: a peptide sequence database and user-friendly web platform. A major update. PheNormGPT: a framework for extraction and normalization of key medical findings. Is metadata of articles about COVID-19 enough for multilabel topic classification task? SesamumGDB: a comprehensive platform for Sesamum genetics and genomics analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1