Zachary J McKenna, Whitley C Atkins, Taysom Wallace, Caitlin P Jarrard, Craig G Crandall, Josh Foster
{"title":"Gastrointestinal permeability and kidney injury risk during hyperthermia in young and older adults.","authors":"Zachary J McKenna, Whitley C Atkins, Taysom Wallace, Caitlin P Jarrard, Craig G Crandall, Josh Foster","doi":"10.1113/EP092204","DOIUrl":null,"url":null,"abstract":"<p><p>We tested whether older adults, compared with young adults, exhibit greater gastrointestinal permeability and kidney injury during heat stress. Nine young (32 ± 3 years) and nine older (72 ± 3 years) participants were heated using a model of controlled hyperthermia (increasing core temperature by 2°C via a water-perfused suit). Gastrointestinal permeability was assessed using a multi-sugar drink test containing lactulose, sucrose and rhamnose. Blood and urine samples were assayed for markers of intestinal barrier injury [plasma intestinal fatty acid binding protein (I-FABP), plasma lipopolysaccharide binding protein (LBP) and plasma soluble cluster of differentiation 14 (sCD14)], inflammation (serum cytokines), kidney function (plasma creatinine and cystatin C) and kidney injury [urine arithmetic product of IGFBP7 and TIMP-2 (TIMP-2 × IGFBP7), neutrophil gelatinase-associated lipocalin and kidney injury molecule-1]. The lactulose-to-rhamnose ratio was increased in both young and older adults (group-wide: Δ0.11 ± 0.11), but the excretion of sucrose was increased only in older adults (Δ1.7 ± 1.5). Young and older adults showed similar increases in plasma LBP (group-wide: Δ0.65 ± 0.89 µg/mL), but no changes were observed for I-FABP or sCD14. Heat stress caused similar increases in plasma creatinine (group-wide: Δ0.08 ± 0.07 mg/dL), cystatin C (group-wide: Δ0.16 ± 0.18 mg/L) and urinary IGFBP7 × TIMP-2 [group-wide: Δ0.64 ± 0.95 (pg/min)<sup>2</sup>] in young and older adults. Thus, the level of heat stress used herein caused modest increases in gastrointestinal permeability, resulting in a mild inflammatory response in young and older adults. Furthermore, our data indicate that older adults might be more at risk for increases in gastroduodenal permeability, as evidenced by the larger increases in sucrose excretion in response to heat stress. Finally, our findings show that heat stress impairs kidney function and elevates markers of kidney injury; however, these responses are not modulated by age.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP092204","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We tested whether older adults, compared with young adults, exhibit greater gastrointestinal permeability and kidney injury during heat stress. Nine young (32 ± 3 years) and nine older (72 ± 3 years) participants were heated using a model of controlled hyperthermia (increasing core temperature by 2°C via a water-perfused suit). Gastrointestinal permeability was assessed using a multi-sugar drink test containing lactulose, sucrose and rhamnose. Blood and urine samples were assayed for markers of intestinal barrier injury [plasma intestinal fatty acid binding protein (I-FABP), plasma lipopolysaccharide binding protein (LBP) and plasma soluble cluster of differentiation 14 (sCD14)], inflammation (serum cytokines), kidney function (plasma creatinine and cystatin C) and kidney injury [urine arithmetic product of IGFBP7 and TIMP-2 (TIMP-2 × IGFBP7), neutrophil gelatinase-associated lipocalin and kidney injury molecule-1]. The lactulose-to-rhamnose ratio was increased in both young and older adults (group-wide: Δ0.11 ± 0.11), but the excretion of sucrose was increased only in older adults (Δ1.7 ± 1.5). Young and older adults showed similar increases in plasma LBP (group-wide: Δ0.65 ± 0.89 µg/mL), but no changes were observed for I-FABP or sCD14. Heat stress caused similar increases in plasma creatinine (group-wide: Δ0.08 ± 0.07 mg/dL), cystatin C (group-wide: Δ0.16 ± 0.18 mg/L) and urinary IGFBP7 × TIMP-2 [group-wide: Δ0.64 ± 0.95 (pg/min)2] in young and older adults. Thus, the level of heat stress used herein caused modest increases in gastrointestinal permeability, resulting in a mild inflammatory response in young and older adults. Furthermore, our data indicate that older adults might be more at risk for increases in gastroduodenal permeability, as evidenced by the larger increases in sucrose excretion in response to heat stress. Finally, our findings show that heat stress impairs kidney function and elevates markers of kidney injury; however, these responses are not modulated by age.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.