GVAF: generalized, flexible filtering software for annotated variant files.

IF 1.7 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Genes & genomics Pub Date : 2024-12-01 Epub Date: 2024-10-12 DOI:10.1007/s13258-024-01580-0
Sora Kim, Sungwon Jung
{"title":"GVAF: generalized, flexible filtering software for annotated variant files.","authors":"Sora Kim, Sungwon Jung","doi":"10.1007/s13258-024-01580-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In the rapidly advancing field of genomics, many tools have been developed to interpret genetic variants using next-generation sequencing (NGS) data. However, these tools often produce annotated variant files in different formats, which require specific software or programming skills to filter and analyze.</p><p><strong>Objective: </strong>To provide a filtering tool that can be used with diverse variant annotation tools without requiring specific software or programming skills.</p><p><strong>Methods: </strong>We developed Germline Variant Annotation and Filtering (GVAF), a command-line software tool that can handle annotated variant files in any table-shaped format. GVAF offers powerful filtering operations without the need for additional software or programming expertise.</p><p><strong>Results: </strong>Built on the Java framework and bash scripts, it provides extensive features, including flexible filtering rules, recognition of genotype-related fields from variant call format (VCF) files, and customizable result generation. GVAF also integrates easily into existing data analysis pipelines. Compared to other tools, GVAF offers a broader range of functionalities, making it more flexible and intuitive for managing annotated variant files.</p><p><strong>Conclusion: </strong>This GVAF software and online manual is publicly available at https://www.sysbiolab.org/gvaf for academic users and is designed to streamline the variant interpretation process, aiding researchers in producing meaningful results.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":"1487-1493"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604800/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-024-01580-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In the rapidly advancing field of genomics, many tools have been developed to interpret genetic variants using next-generation sequencing (NGS) data. However, these tools often produce annotated variant files in different formats, which require specific software or programming skills to filter and analyze.

Objective: To provide a filtering tool that can be used with diverse variant annotation tools without requiring specific software or programming skills.

Methods: We developed Germline Variant Annotation and Filtering (GVAF), a command-line software tool that can handle annotated variant files in any table-shaped format. GVAF offers powerful filtering operations without the need for additional software or programming expertise.

Results: Built on the Java framework and bash scripts, it provides extensive features, including flexible filtering rules, recognition of genotype-related fields from variant call format (VCF) files, and customizable result generation. GVAF also integrates easily into existing data analysis pipelines. Compared to other tools, GVAF offers a broader range of functionalities, making it more flexible and intuitive for managing annotated variant files.

Conclusion: This GVAF software and online manual is publicly available at https://www.sysbiolab.org/gvaf for academic users and is designed to streamline the variant interpretation process, aiding researchers in producing meaningful results.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GVAF:用于注释变异文件的通用、灵活的过滤软件。
背景:在飞速发展的基因组学领域,人们开发了许多工具来利用下一代测序(NGS)数据解读基因变异。然而,这些工具通常会生成不同格式的注释变异文件,需要特定的软件或编程技巧才能进行过滤和分析:提供一种可与多种变异注释工具一起使用的过滤工具,而无需特定的软件或编程技能:我们开发了种系变异注释和过滤(GVAF),这是一种命令行软件工具,可以处理任何表格格式的注释变异文件。GVAF提供了强大的过滤操作,无需额外的软件或编程知识:GVAF 基于 Java 框架和 bash 脚本构建,具有广泛的功能,包括灵活的过滤规则、识别变异调用格式 (VCF) 文件中的基因型相关字段以及可定制的结果生成。GVAF 还能轻松集成到现有的数据分析管道中。与其他工具相比,GVAF 提供了更广泛的功能,使其在管理注释变异文件方面更加灵活和直观:该 GVAF 软件和在线手册可通过 https://www.sysbiolab.org/gvaf 公开获取,供学术界用户使用,旨在简化变异解释过程,帮助研究人员得出有意义的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genes & genomics
Genes & genomics 生物-生化与分子生物学
CiteScore
3.70
自引率
4.80%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.
期刊最新文献
Prevalence of germline 113 cancer genes in healthy Indonesian hospital staff. Multi-omics analysis identifies SMPD1 as a key contributor in sphingolipid pathway for Type 2 diabetes pathogenesis. Clariid catfish hybridization in aquaculture: a comprehensive review of strategies, challenges, and future directions. Molecular remodeling of the central auditory pathway in tinnitus revealed by RNA sequencing. A novel duplication mutation in the MYO7A gene associated with autosomal recessive hearing loss in a Chinese family.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1