Fabian Frost, Stefan Weiss, Johannes Hertel, Malte Rühlemann, Corinna Bang, Andre Franke, Matthias Nauck, Marcus Dörr, Henry Völzke, Dirk Roggenbuck, Peter Schierack, Uwe Völker, Georg Homuth, Ali A Aghdassi, Matthias Sendler, Markus M Lerch, Frank U Weiss
{"title":"Fecal glycoprotein 2 is a marker of gut microbiota dysbiosis and systemic inflammation.","authors":"Fabian Frost, Stefan Weiss, Johannes Hertel, Malte Rühlemann, Corinna Bang, Andre Franke, Matthias Nauck, Marcus Dörr, Henry Völzke, Dirk Roggenbuck, Peter Schierack, Uwe Völker, Georg Homuth, Ali A Aghdassi, Matthias Sendler, Markus M Lerch, Frank U Weiss","doi":"10.1186/s13099-024-00657-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Antimicrobial autoantigenic glycoprotein 2 (GP2) is an important component of the innate immune system which originates from the exocrine pancreas as well as from the small intestines. The relationship of GP2 with the intestinal microbiome as well as the systemic implications of increased fecal GP2 levels are, however, still unclear. Therefore, fecal samples from 2,812 individuals of the Study of Health in Pomerania (SHIP) were collected to determine GP2 levels (enzyme-linked immunosorbent assay) and gut microbiota profiles (16 S rRNA gene sequencing). These data were correlated and associated with highly standardised and comprehensive phenotypic data of the study participants.</p><p><strong>Results: </strong>Fecal GP2 levels were increased in individuals with higher body mass index and smokers, whereas lower levels were found in case of preserved exocrine pancreatic function, female sex or a healthier diet. Moreover, higher GP2 levels were associated with increased serum levels of high-sensitivity C-reactive protein, loss of gut microbial diversity and an increase of potentially detrimental bacteria (Streptococcus, Haemophilus, Clostridium XIVa, or Collinsella). At the same time, predicted microbial pathways for the biosynthesis of beneficial short-chain fatty acids or lactic acid were depleted in individuals with high fecal GP2. Of note, GP2 exhibited a stronger association to overall microbiome variation than calprotectin.</p><p><strong>Conclusion: </strong>Fecal GP2 is a biomarker of gut microbiota dysbiosis and associated with increased systemic inflammation. The intestines may be more important as origin for GP2 than pancreatic acinar cells. Future studies need to investigate the potential clinical value in disease specific patient cohorts.</p>","PeriodicalId":12833,"journal":{"name":"Gut Pathogens","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490104/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13099-024-00657-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Antimicrobial autoantigenic glycoprotein 2 (GP2) is an important component of the innate immune system which originates from the exocrine pancreas as well as from the small intestines. The relationship of GP2 with the intestinal microbiome as well as the systemic implications of increased fecal GP2 levels are, however, still unclear. Therefore, fecal samples from 2,812 individuals of the Study of Health in Pomerania (SHIP) were collected to determine GP2 levels (enzyme-linked immunosorbent assay) and gut microbiota profiles (16 S rRNA gene sequencing). These data were correlated and associated with highly standardised and comprehensive phenotypic data of the study participants.
Results: Fecal GP2 levels were increased in individuals with higher body mass index and smokers, whereas lower levels were found in case of preserved exocrine pancreatic function, female sex or a healthier diet. Moreover, higher GP2 levels were associated with increased serum levels of high-sensitivity C-reactive protein, loss of gut microbial diversity and an increase of potentially detrimental bacteria (Streptococcus, Haemophilus, Clostridium XIVa, or Collinsella). At the same time, predicted microbial pathways for the biosynthesis of beneficial short-chain fatty acids or lactic acid were depleted in individuals with high fecal GP2. Of note, GP2 exhibited a stronger association to overall microbiome variation than calprotectin.
Conclusion: Fecal GP2 is a biomarker of gut microbiota dysbiosis and associated with increased systemic inflammation. The intestines may be more important as origin for GP2 than pancreatic acinar cells. Future studies need to investigate the potential clinical value in disease specific patient cohorts.
Gut PathogensGASTROENTEROLOGY & HEPATOLOGY-MICROBIOLOGY
CiteScore
7.70
自引率
2.40%
发文量
43
期刊介绍:
Gut Pathogens is a fast publishing, inclusive and prominent international journal which recognizes the need for a publishing platform uniquely tailored to reflect the full breadth of research in the biology and medicine of pathogens, commensals and functional microbiota of the gut. The journal publishes basic, clinical and cutting-edge research on all aspects of the above mentioned organisms including probiotic bacteria and yeasts and their products. The scope also covers the related ecology, molecular genetics, physiology and epidemiology of these microbes. The journal actively invites timely reports on the novel aspects of genomics, metagenomics, microbiota profiling and systems biology.
Gut Pathogens will also consider, at the discretion of the editors, descriptive studies identifying a new genome sequence of a gut microbe or a series of related microbes (such as those obtained from new hosts, niches, settings, outbreaks and epidemics) and those obtained from single or multiple hosts at one or different time points (chronological evolution).