Hui Cheng, Fu Wei, Julieta S Del Valle, Tessa H R Stolk, Judith A Huirne, Joyce D Asseler, Gonneke S K Pilgram, Lucette A J Van Der Westerlaken, Norah M Van Mello, Susana M Chuva De Sousa Lopes
{"title":"In vitro growth of secondary follicles from cryopreserved-thawed ovarian cortex.","authors":"Hui Cheng, Fu Wei, Julieta S Del Valle, Tessa H R Stolk, Judith A Huirne, Joyce D Asseler, Gonneke S K Pilgram, Lucette A J Van Der Westerlaken, Norah M Van Mello, Susana M Chuva De Sousa Lopes","doi":"10.1093/humrep/deae240","DOIUrl":null,"url":null,"abstract":"<p><strong>Study question: </strong>Can secondary follicles be obtained from cultured cryopreserved-thawed human ovarian cortical tissue?</p><p><strong>Summary answer: </strong>We obtained high-quality secondary follicles from cultured cryopreserved-thawed human ovarian cortical tissue from cis female donors (cOVA), but not from trans masculine donors (tOVA) in the same culture conditions.</p><p><strong>What is known already: </strong>The in vitro growth of oocytes present in unilaminar follicles into metaphase II stage (MII) oocytes has been previously achieved starting from freshly obtained ovarian cortical tissue from adult cis female donors. This involved a multi-step culture protocol and the first step included the transition from unilaminar follicles to multilayered secondary follicles. Given that the ovarian cortex (from both cis female and trans masculine donors) used for fertility preservation is cryopreserved, it is crucial to investigate the potential of unilaminar follicles from cryopreserved-thawed ovarian cortex to grow in culture.</p><p><strong>Study design, size, duration: </strong>Cryopreserved-thawed ovarian cortical tissue from adult trans masculine donors (n = 3) and adult cis female donors (n = 3) was used for in vitro culture following the first culture step described in two published culture protocols (7-8 days and 21 days) and compared to freshly isolated ovarian cortex from trans masculine donors (n = 3) and to ovarian cortex prior to culture.</p><p><strong>Participants/materials, setting, methods: </strong>Ovarian cortical tissue was obtained from adult trans masculine donors undergoing gender-affirming surgery while using testosterone, and from adult cis female donors undergoing oophorectomy for fertility preservation purposes before chemotherapy. The ovarian cortex was fixed either prior (day 0) or after the culture period. Follicular survival, growth, and morphology were assessed through histology and immunofluorescence.</p><p><strong>Main results and the role of chance: </strong>We quantified the different stages of follicular development (primordial, primary, secondary, and atretic) after culture and observed an increase in the percentage of secondary follicles as well as an increase in COLIV deposition in the stromal compartment regardless of the culture media used. The quality of the secondary follicles obtained from cOVA was comparable to those prior to culture. However, in the same culture conditions, the secondary follicles from tOVA (fresh and cryo) showed low-quality secondary follicles, containing oocytes with small diameter, granulosa cells that expressed abnormal levels of KRT19 and steroidogenic-marker STAR and lacked ACTA2+ theca cells, when compared to tOVA secondary follicles prior to culture.</p><p><strong>Limitations, reasons for caution: </strong>The number of different donors used was limited.</p><p><strong>Wider implications of the findings: </strong>Our study revealed that cryopreserved-thawed cOVA can be used to generate high-quality secondary follicles after culture and those can now be further tested to evaluate their potential to generate functional MII oocytes that could be used in the clinic. However, using the same culture protocol on tOVA (fresh and cryo) did not yield high-quality secondary follicles, suggesting that either the testosterone treatment affects follicular quality or adapted culture protocols are necessary to obtain high-quality secondary follicles from tOVA. Importantly, caution must be taken when using tOVA to optimize folliculogenesis in vitro.</p><p><strong>Study funding/competing interest(s): </strong>This research was funded by the European Research Council Consolidator Grant OVOGROWTH (ERC-CoG-2016-725722 to J.S.D.V. and S.M.C.D.S.L.), the Novo Nordisk Foundation (reNEW NNF21CC0073729 to H.C., F.W., J.S.D.V., S.M.C.D.S.L.), and China Scholarship Council (CSC 202008320362 and CSC 202008450034 to H.C. and F.W.), respectively. The authors have no conflicts of interest to declare.</p><p><strong>Trial registration number: </strong>N/A.</p>","PeriodicalId":13003,"journal":{"name":"Human reproduction","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human reproduction","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/humrep/deae240","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Study question: Can secondary follicles be obtained from cultured cryopreserved-thawed human ovarian cortical tissue?
Summary answer: We obtained high-quality secondary follicles from cultured cryopreserved-thawed human ovarian cortical tissue from cis female donors (cOVA), but not from trans masculine donors (tOVA) in the same culture conditions.
What is known already: The in vitro growth of oocytes present in unilaminar follicles into metaphase II stage (MII) oocytes has been previously achieved starting from freshly obtained ovarian cortical tissue from adult cis female donors. This involved a multi-step culture protocol and the first step included the transition from unilaminar follicles to multilayered secondary follicles. Given that the ovarian cortex (from both cis female and trans masculine donors) used for fertility preservation is cryopreserved, it is crucial to investigate the potential of unilaminar follicles from cryopreserved-thawed ovarian cortex to grow in culture.
Study design, size, duration: Cryopreserved-thawed ovarian cortical tissue from adult trans masculine donors (n = 3) and adult cis female donors (n = 3) was used for in vitro culture following the first culture step described in two published culture protocols (7-8 days and 21 days) and compared to freshly isolated ovarian cortex from trans masculine donors (n = 3) and to ovarian cortex prior to culture.
Participants/materials, setting, methods: Ovarian cortical tissue was obtained from adult trans masculine donors undergoing gender-affirming surgery while using testosterone, and from adult cis female donors undergoing oophorectomy for fertility preservation purposes before chemotherapy. The ovarian cortex was fixed either prior (day 0) or after the culture period. Follicular survival, growth, and morphology were assessed through histology and immunofluorescence.
Main results and the role of chance: We quantified the different stages of follicular development (primordial, primary, secondary, and atretic) after culture and observed an increase in the percentage of secondary follicles as well as an increase in COLIV deposition in the stromal compartment regardless of the culture media used. The quality of the secondary follicles obtained from cOVA was comparable to those prior to culture. However, in the same culture conditions, the secondary follicles from tOVA (fresh and cryo) showed low-quality secondary follicles, containing oocytes with small diameter, granulosa cells that expressed abnormal levels of KRT19 and steroidogenic-marker STAR and lacked ACTA2+ theca cells, when compared to tOVA secondary follicles prior to culture.
Limitations, reasons for caution: The number of different donors used was limited.
Wider implications of the findings: Our study revealed that cryopreserved-thawed cOVA can be used to generate high-quality secondary follicles after culture and those can now be further tested to evaluate their potential to generate functional MII oocytes that could be used in the clinic. However, using the same culture protocol on tOVA (fresh and cryo) did not yield high-quality secondary follicles, suggesting that either the testosterone treatment affects follicular quality or adapted culture protocols are necessary to obtain high-quality secondary follicles from tOVA. Importantly, caution must be taken when using tOVA to optimize folliculogenesis in vitro.
Study funding/competing interest(s): This research was funded by the European Research Council Consolidator Grant OVOGROWTH (ERC-CoG-2016-725722 to J.S.D.V. and S.M.C.D.S.L.), the Novo Nordisk Foundation (reNEW NNF21CC0073729 to H.C., F.W., J.S.D.V., S.M.C.D.S.L.), and China Scholarship Council (CSC 202008320362 and CSC 202008450034 to H.C. and F.W.), respectively. The authors have no conflicts of interest to declare.
期刊介绍:
Human Reproduction features full-length, peer-reviewed papers reporting original research, concise clinical case reports, as well as opinions and debates on topical issues.
Papers published cover the clinical science and medical aspects of reproductive physiology, pathology and endocrinology; including andrology, gonad function, gametogenesis, fertilization, embryo development, implantation, early pregnancy, genetics, genetic diagnosis, oncology, infectious disease, surgery, contraception, infertility treatment, psychology, ethics and social issues.