Barbara Bruna Abreu Castro, Petrus Ferreira Reno, Bianca Fatima Pereira, Kaique Arriel, Fabiana Bastos Bonato, Fernando Antonio Basile Colugnati, Marcos Antonio Cenedeze, Niels Olsen Saraiva-Camara, Helady Sanders-Pinheiro
{"title":"Fenofibrate attenuates renal lipotoxicity in uninephrectomized mice with high-fat diet-induced obesity.","authors":"Barbara Bruna Abreu Castro, Petrus Ferreira Reno, Bianca Fatima Pereira, Kaique Arriel, Fabiana Bastos Bonato, Fernando Antonio Basile Colugnati, Marcos Antonio Cenedeze, Niels Olsen Saraiva-Camara, Helady Sanders-Pinheiro","doi":"10.1590/2175-8239-JBN-2023-0148en","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The objective of this study was to investigate the role of fenofibrate, a peroxisome proliferator-activated receptor-α agonist, in obesity-induced kidney damage (lipotoxicity) in mice with uninephrectomy.</p><p><strong>Methods: </strong>C57BL/6 mice underwent uninephrectomy and sham surgeries and were fed normocaloric or high-fat diets. After 10 weeks, obese mice were administered 0.02% fenofibrate for 10 weeks. Kidney function and morphology were evaluated, as well as levels of inflammatory and fibrotic mediators and lipid metabolism markers.</p><p><strong>Results: </strong>High-fat diet-fed mice developed characteristic obesity and hyperlipidemia, with subsequent renal lipid accumulation and damage, including mesangial expansion, interstitial fibrosis, inflammation, and proteinuria. These changes were greater in obese uninephrectomy mice than in obese sham mice. Fenofibrate treatment prevented hyperlipidemia and glomerular lesions, lowered lipid accumulation, ameliorated renal dysfunction, and attenuated inflammation and renal fibrosis. Furthermore, fenofibrate treatment downregulated renal tissue expression of plasminogen activator inhibitor-1, monocyte chemoattractant protein-1, and local expression of fibroblast growth factor-21.</p><p><strong>Conclusion: </strong>Peroxisome proliferator-activated receptor-α activation by fenofibrate, with subsequent lipolysis, attenuated glomerular and tubulointerstitial lesions induced by renal lipotoxicity, thus protecting the kidneys of uninephrectomy mice from obesity-induced lesions. The study findings suggest a pathway in the pharmacological action of fenofibrate, providing insight into the mechanisms involved in kidney damage caused by obesity in kidney donors.</p>","PeriodicalId":14724,"journal":{"name":"Jornal brasileiro de nefrologia : 'orgao oficial de Sociedades Brasileira e Latino-Americana de Nefrologia","volume":"46 4","pages":"e20230148"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539900/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jornal brasileiro de nefrologia : 'orgao oficial de Sociedades Brasileira e Latino-Americana de Nefrologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2175-8239-JBN-2023-0148en","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The objective of this study was to investigate the role of fenofibrate, a peroxisome proliferator-activated receptor-α agonist, in obesity-induced kidney damage (lipotoxicity) in mice with uninephrectomy.
Methods: C57BL/6 mice underwent uninephrectomy and sham surgeries and were fed normocaloric or high-fat diets. After 10 weeks, obese mice were administered 0.02% fenofibrate for 10 weeks. Kidney function and morphology were evaluated, as well as levels of inflammatory and fibrotic mediators and lipid metabolism markers.
Results: High-fat diet-fed mice developed characteristic obesity and hyperlipidemia, with subsequent renal lipid accumulation and damage, including mesangial expansion, interstitial fibrosis, inflammation, and proteinuria. These changes were greater in obese uninephrectomy mice than in obese sham mice. Fenofibrate treatment prevented hyperlipidemia and glomerular lesions, lowered lipid accumulation, ameliorated renal dysfunction, and attenuated inflammation and renal fibrosis. Furthermore, fenofibrate treatment downregulated renal tissue expression of plasminogen activator inhibitor-1, monocyte chemoattractant protein-1, and local expression of fibroblast growth factor-21.
Conclusion: Peroxisome proliferator-activated receptor-α activation by fenofibrate, with subsequent lipolysis, attenuated glomerular and tubulointerstitial lesions induced by renal lipotoxicity, thus protecting the kidneys of uninephrectomy mice from obesity-induced lesions. The study findings suggest a pathway in the pharmacological action of fenofibrate, providing insight into the mechanisms involved in kidney damage caused by obesity in kidney donors.