Corrinoid salvaging and cobamide remodeling in bacteria and archaea.

IF 2.7 3区 生物学 Q3 MICROBIOLOGY Journal of Bacteriology Pub Date : 2024-11-21 Epub Date: 2024-10-15 DOI:10.1128/jb.00286-24
Elizabeth A Villa, Jorge C Escalante-Semerena
{"title":"Corrinoid salvaging and cobamide remodeling in bacteria and archaea.","authors":"Elizabeth A Villa, Jorge C Escalante-Semerena","doi":"10.1128/jb.00286-24","DOIUrl":null,"url":null,"abstract":"<p><p>Cobamides (Cbas) are cobalt-containing cyclic tetrapyrroles used by cells from all domains of life as co-catalyst of diverse reactions. There are several structural features that distinguish Cbas from one another. The most relevant of those features discussed in this review is the lower ligand, which is the nucleobase of a ribotide located in the lower face of the cyclic tetrapyrrole ring. The above-mentioned ribotide is known as the nucleotide loop, which is attached to the ring by a short linker. In Cbas, the nucleobase of the ribotide can be benzimidazole or derivatives of it, purine or derivatives of it, or phenolic compounds. Given the importance of Cbas in prokaryotic metabolism, it is not surprising that prokaryotes have evolved enzymes that cleave part or the entire nucleotide loop. This function is advantageous when Cbas contain nucleobases that somehow interfere with the function of Cba-dependent enzymes in the organism. After cleavage, Cbas are rebuilt via the nucleotide loop assembly (NLA) pathway, which includes enzymes that activate the nucleobase and the ring intermediate, followed by condensation of activated intermediates and a final dephosphorylation reaction. This exchange of nucleobases is known as Cba remodeling. The NLA pathway is used to salvage Cba precursors from the environment.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0028624"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580458/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00286-24","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cobamides (Cbas) are cobalt-containing cyclic tetrapyrroles used by cells from all domains of life as co-catalyst of diverse reactions. There are several structural features that distinguish Cbas from one another. The most relevant of those features discussed in this review is the lower ligand, which is the nucleobase of a ribotide located in the lower face of the cyclic tetrapyrrole ring. The above-mentioned ribotide is known as the nucleotide loop, which is attached to the ring by a short linker. In Cbas, the nucleobase of the ribotide can be benzimidazole or derivatives of it, purine or derivatives of it, or phenolic compounds. Given the importance of Cbas in prokaryotic metabolism, it is not surprising that prokaryotes have evolved enzymes that cleave part or the entire nucleotide loop. This function is advantageous when Cbas contain nucleobases that somehow interfere with the function of Cba-dependent enzymes in the organism. After cleavage, Cbas are rebuilt via the nucleotide loop assembly (NLA) pathway, which includes enzymes that activate the nucleobase and the ring intermediate, followed by condensation of activated intermediates and a final dephosphorylation reaction. This exchange of nucleobases is known as Cba remodeling. The NLA pathway is used to salvage Cba precursors from the environment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细菌和古细菌中的珊瑚酰胺挽救和钴酰胺重塑。
钴酰胺(Cbas)是一种含钴的环状四吡咯化合物,被各生命领域的细胞用作各种反应的辅助催化剂。Cbas 在结构上有几个不同的特征。本综述讨论的这些特征中最相关的是低位配体,即位于环状四吡咯环低位的核糖核苷酸的核碱基。上述核苷酸被称为核苷酸环,它通过一个短连接体连接到环上。在 Cbas 中,核苷酸的核碱基可以是苯并咪唑或其衍生物、嘌呤或其衍生物,也可以是酚类化合物。鉴于 Cbas 在原核生物新陈代谢中的重要性,原核生物进化出能裂解部分或整个核苷酸环的酶也就不足为奇了。当 Cbas 中含有的核碱基会以某种方式干扰生物体内依赖 Cba 的酶的功能时,这种功能就会变得有利。裂解后,Cbas 通过核苷酸环组装(NLA)途径重建,其中包括激活核碱基和环状中间体的酶,然后是激活中间体的缩合和最后的去磷酸化反应。这种核碱基交换被称为 Cba 重塑。NLA 途径用于从环境中挽救 Cba 前体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
期刊最新文献
CodY controls the SaeR/S two-component system by modulating branched-chain fatty acid synthesis in Staphylococcus aureus. Impact of high-speed nanodroplets on various pathogenic bacterial cell walls. Vibrio cholerae: a fundamental model system for bacterial genetics and pathogenesis research. A flagellar accessory protein links chemotaxis to surface sensing. Combinatorial control of type IVa pili formation by the four polarized regulators MglA, SgmX, FrzS, and SopA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1